
DEVELOPMENT AND FABRICATION OF CARBON NANOTUBE (CNT) BASED pH SENSOR

UNIVERSITI MALAYSIA PERLIS

2013

A thesis submitted in fulfillment of the requirement for the degree of Master of Science (Nanoelectronics Engineering)

Institute of Nanoelectronic Engineering

UNIVERSITI MALAYSIA PERLIS

2013

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS

Author's full name	:	Low Foo Wah
Date of birth	:	7 August 1985
Title	:	Development and Fabrication of Carbon Nanotube
		(CNT) Based pH Sensor
Academic Session	:	2012/2013
I hereby declare that this	thesis	becomes the property of Universiti Malaysia Perl

lis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :

CONFIDENTIAL	(Contains confidential information under the Official
	Secret Act 1972)
	0
RESTICTED	(Contains restricted information as specified by the
	organization where research was done)
OPEN ACCESS	I agree that my thesis is to be made immediately
	available as hard copy or on-line open access (full text)
	the UniMAP to reproduce this thesis in whole or in part for
	mic exchange only (except during a period ofyears, if
so requested above).	
this it	Certified by:
©	
SIGNATURE	SIGNATURE OF SUPERVISOR
SIGNATURE	SIGNATURE OF SUPERVISOR
(NEW IC NO. / PASSPORT N	O.) NAME OF SUPERVISOR

Date : _____

Date :_____

ACKNOWLEDGEMENTS

I would like to thanks Universiti Malaysia Perlis (UniMAP) and specifically Institute of Nanoelectronics Engineering (INEE) for providing me the great facilities, machines, and instruments to finished my project.

I would like to address special thanks to my present main supervisor Professor Dr. Uda Hashim and co-supervisor Encik Nuzaihan Md Noor from whom I have learned a lot of technical skill, patience, and guidance in this project I am also thankful to my previous main supervisor Cik Nur Hamidah Abdul Halim for giving me a lot of encouragements for my academic research efforts.

I also thank Encik Ramzan, Mira, Hasrul, Encik Hafiz b. Abd Razak, Encik Bahari Man who helped me directly or indirectly until finished my project. Also, I would like to express my gratitude to the semester financial support by MyMaster (Mybrains15) scholarship, my project expenses support Geran MOA Sciencefund, FRGS who giving me opportunities to finish my project, without them it was impossible for me to complete.

Lastly, thanks to my beloved family members, good friend fellows Chong Soon Weng, my all Nano Biochip Group fellows, Shahidah Arina Shamsuddin, Nazwa Binti Taib, Foo Kai Loong, Emi, Siti Fatimah, Khashif Farooq, Nizah, who shared a lot of experience, expertise, motivation, and helping me throughout the project.

TABLE OF CONTENTS

	PAGE
THESIS DECLARATION	iii
ACKNOWLEGDEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi
LIST OF SYMBOLS	xiv
ABSTRAK	xvii
LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS ABSTRAK ABSTRACT CHAPTER 1 BACKGROUND 1.1. Introduction 1.2. Problem Statement	xviii
CHAPTER 1 BACKGROUND	
1.1. Introduction	1
1.2. Problem Statement	2
1.3. Research Objective	3
1.4. Research Scope	4
1.5. Thesis Overview	5
CHAPTER 2 LITERATURE REVIEW	
2.1. Introduction	6
2.2. Carbon Nanotubes	6
2.3. Single-Walled Carbon Nanotubes (SWCNTs)	9
2.3.1. Physical Properties of Carbon Nanotubes	10
2.3.2. Electrical Properties of Carbon Nanotubes	10
2.3.3. Mechanical Properties of Carbon Nanotubes	12

2.3.4. Electromechanical Properties of Carbon Nanotubes	14
2.4. Carbon Nanotubes Based Sensor	14
2.5. Carbon Nanotubes Dispersion	15
2.6. Horizontally Carbon Nanotubes Alignment	16
2.7. pH Sensitivity	20
2.8. Carbon Nanotubes Application	21
2.8.1. Biosensors	21
 2.8. Carbon Nanotubes Application 2.8.1. Biosensors 2.8.2. Temperature Sensors 2.8.3. Flow Sensors 2.8.4. Chemical Sensors 	23
2.8.3. Flow Sensors	24
2.8.4. Chemical Sensors	24
2.9. Electrical Characterization of Aligned SWCNT	27
CHAPTER 3 RESEARCH METHODOLOGY	
3.1. Introduction	30
3.2. Wafer Preparation	32
3.3. Mask Design	34
3.4. CNT Devices Fabrication Process Flow	36
3.5. Dispersion Process	39
3.6. AC Dielectrophoresis Method	41
3.7. Morphological Characterization	42
3.8. Electrical Characterization with pH Buffers	43
CHAPTER 4 RESULTS AND DISCUSSIONS	
4.1 Introduction	45
4.2 Chrome Mask Dimension Results	45
4.3 Microgap Morphological Characterization	46

4.3.1.	Optical Microscope (HPM) Results	46	
4.3.2.	Atomic Force Microscope Results	48	
4.3.3.	3D Profilometer Surface Thickness Measurement	49	
4.4 Final Dev	ices Results	51	
4.5 Dispersion	n of SWCNTs in Several Solvents	52	
4.6 Carbon N	anotubes Alignment between Electrodes Gap	58	
4.6.1.	Comparison of Aluminum (Al) and Aurum (Au) Gap Distance	58	
4.6.2.	Single Walled Carbon Nanotubes (SWCNTs) Energy-dispersive X-ray Spectroscopy (EDX) results	60	
4.6.3.	Single Walled Carbon Nanotubes (SWCNTs) Alignment Results	61	
4.7 Electrical	Characterization	62	
4.7.1.	Device Impedance Results	62	
4.7.2.	Device Conductance Results	65	
4.7.3.	Device Capacitance Results	67	
CHAPTER 5 CONCLUSION			
5.1 Introduction 70			
5.2 Conclusion 7			
5.3 Recommendation 7		71	
REFERENCES		72	
APPENDICES		79	
LIST OF PAPER PUBLICATIONS		82	
LIST OF CONFERENCE PROCEEDING 83			
LIST OF ACHIEVEMENTS 84			

LIST OF TABLES

No.		PAGE
2.1	Diameter, <i>D</i> , suspended length, <i>L</i> , slope of the force deflection curve, $\Delta\delta/\Delta F$, and calculated Young's and Shear Moduli (<i>Er</i> and <i>G</i> , respectively)	13
3.1	Composition of RCA-1, RCA-2	32
3.2	Gap for groups dimensions	35
3.3	SWCNT alignment parameter setup	41
4.1	Parameter setup for 3D profilometer	50
4.2	Gap for groups dimensions SWCNT alignment parameter setup Parameter setup for 3D profilometer Dispersion process and results	54
(\bigcirc	

LIST OF FIGURES

No.		PAGE
2.1	Lattice structure of grapheme	7
2.2	Graphite structure	8
2.3	One-dimensional unit cell	8
2.4	"Armchair" tube and "Zig-zag" tube arrangement in hexagon	9
2.5	AFM tips apply a force to nanotube rope	13
2.6	Schematic outline of the experimental procedure; (a) CNTs solution placed near the wide and of the channel with a jet of N ₂ (b) CNTs partially aligned by capillary action after removal of the PDMS channel; (c) CNTs aligned in narrower patterns with a second N_2 flow	19 2;
2.7	Sensor response to different concentration of NO_2 at room temperature with flow rate of 500ml/min	25
2.8	Experimental data on linear dependence on $\Delta R - R0$	26
2.9	(a) The recorded resistance history of a SWCNT-based sensor when exposed to pH buffers from pH9 to pH5 and then to pH buffers from pH5 to pH9, (b) Time history plot of (SWCNT-PSS/PANI) ₅₀ thin film resistance due to different	28
2.10	pH buffer solutions Resistance variation of one sensor in five pH buffer solutions in	29
3.1	10 days The overall project flow	31
3.2	Silicon wafer preparation process flow	33
3.3	Patterns designed for 6 groups	35
3.4	The actual overall design used to develop the electrode pad	36
3.5	CNT sensor fabrication process flow	38
3.6	Dispersion process flow	40
3.7	Experimental setup for ultrasonic process	40
3.8	AC Dielectrophoresis Method schematic experimental setup	42

3.9	Electrical characterization schematic experimental setup	44
4.1	(a) Initial gap dimension of chrome mask from group 1 (1.0 μ m) under x1500 magnification. (b) Another design pattern from	46
4.2	group 1 (1.0 μm) chrome mask under x1500 magnification (a) After develop for 28secs, (b) After etch with Aqua Regia for 1mins, (c) Center side electrode gap measurement after develop process, (d) Center side electrode gap measurement after resist removed	47
4.3	Atomic Force Microscopy (AFM) topographic image of Au	48
4.4	electrode gap AFM line profile Side view electrode 3D pattern 3D pattern of Au electrode gap Final fabricated device FTIR analyzed results	49
4.5	Side view electrode 3D pattern	50
4.6	3D pattern of Au electrode gap	51
4.7	Final fabricated device	52
4.8	FTIR analyzed results	57
4.9	(a) Al electrode pad under x500 magnification,(b) Au electrode pad under x1500 magnification	59
4.10	(a) Al electrode pad using SEM under x550 magnification, (b) Au electrode pad using SEM under x2300 magnification	59
4.11	EDX FESEM results	60
4.12	SWCNT SEM results	61
4.13	FESEM result of SWCNT alignment	62
4.14	Impedance-Frequency plot for after SWCNT aligned	64
4.15	Resistance variation of one sensor in five pH buffer solutions in 7 days	65
4.16	Conductance-Frequency plot for after SWCNT aligned	66
4.17	Capacitance-Frequency plot for before SWCNT align device	68
4.18	Capacitance-Frequency plot for capacitance comparison of before and after SWCNT align	69

LIST OF ABBREVIATIONS

- Ti Titanium
- Au Aurum
- SiO₂ Silicon Dioxide
- **SWCNTs** Single-Walled Carbon Nanotubes
- Multi-Walled Carbon Nanotubes **MWNTs**
- DI Water Deionized water
- SDS Sodium Dodecyl Sulfate
- nalcopyright Carbon Nanotube Field-Effect Transistor **CNT-FET**
- High Power Microscope HPM
- AFM Atomic Force Microscope
- **FTIR** Fourier Transform Infrared Spectroscopy
- Scanning Electron Microscope SEM
- Field Emission Scanning Electron Microscopy FESEM
- 1D One-dimensional
- Two-Dimensional 2D
- 3D Three-Dimensional
- CVD Chemical Vapor Deposition
- PECVD Plasma-Enhanced Chemical Vapor Deposition
- High-Resolution Transmission Electron Microscopy HRTEM
- NEMS Nano Electromechanical Systems
- MEMS Micro Electromechanical Systems
- AC Alternating Current

DC Direct Current

- TCR Thermal Coefficient of Resistivity
- SAMs Self-Assembled Monolayers
- GAMA Gas Assisted Microfluidic Alignment
- PDMS Polydimethylsiloxane
- DEP Dielectrophoresis
- byorieinal copyright Nicotinamide Adenine Dinucleotide NADH
- ss-DNA Single-Stranded DNA
- **CNFs** Carbon Nanofibres
- Si Silicon
- **PMMA** Polymethylmethacrylate
- Isopropyl Alcoho IPA
- HCl Hydrochloric Acids
- HNO₃ Nitric Acids
- Dichloromethane DCM
- Triton X-100 Triton-X
- Carboxylic Acids -OH
- Al Aluminum
- X-ray Spectroscopy EDX
- С Carbon
- pH Buffer Solution pН
- \mathbf{H}^+ Hydrogen
- Hydroxide OH^{-}
- Т Time

f	Frequency
R	Resistance
V	Potential Difference
N_2	Nitrogen
DNA	Deoxyribonucleic acid
SOI	Silicon on Insulator
NO ₂	Nitrogen Dioxide
Cr	Chromium
NH ₃	Ammonia
Ar	Argon
CO	Silicon on Insulator Nitrogen Dioxide Chromium Ammonia Argon Carbon Oxide Helium Current-Voltage Wyko NT9100 Optical Profiler
Не	Helium
I-V	Current-Voltage
WYKO	Wyko NT9100 Optical Profiler
P-type	Positive Type
RCA1	Standard Set of Wafer Cleaning Steps
RCA2	Standard Set of Wafer Cleaning Steps
R _s	Sheet Resistance
-COOH	Carboxylic Functional Group
-OH	Carboxylic Acids
Sig	Conductivity
PR	Photoresist

LIST OF SYMBOLS

- % Percent
- Nanometer nm
- Pa Pascal
- eV Unit of Energy
- Å Angstrom
- d
- e
- h
- ...ск's Constant Apparent Number of Conducting Channels Conductance for CNTs Juantum Unit of the С-ilo Μ
- G
- G_0 protec
- k Kilo
- Ω Ohm
- Enerygy Band Gap Egap
- C-C Tight Binding Overlap Energy γ_0
- Nearest Neighbor C-C Distance a_{c-c}
- cm Centimeter
- $^{\circ}$ C **Celsius Degrees**
- A/cm² Current Density
- Hz Hertz
- G Giga
- L Suspended Length

$\Delta\delta/\Delta F$ Slope of the Force Deflection Curve

- Er Young's Moduli
- G Shear Moduli
- 0 Degree
- Micro μ
- Micrometer μm
- Microliter μl
- otected by oriesmal copyright Traditional unit of pressure Torr
- seconds S
- millimeter mm
- min minute
- ml milliliter
- Parts Per Million ppm
- **Resolutions Per Minute** rpm
- Milligram mg
- V Voltage
- Ω /sq Sheet Resistance
- nm^2 Nanometer Square
- cm⁻¹ Wavenumber
- Ζ Impedance
- R Ohmic Resistance
- Х Reactance
- Time t
- Amp Ampere

S/cm Conductivity

- Q Capacitance of a Conductor is the Ratio of the Charge
- С Capacitance of Conductor
- Ι Current
- Delta Time Δt
- f

orthis item is protected by original copyright

Pembangunan dan Fabrikasi Tiub Nano Karbon (CNT) berdasarkan Sensor pH

ABSTRAK

Pembangunan, fabrikasi dan pencirian nanotube karbon tunggal berdinding (SWCNTs) berdasarkan sensor pH menggunakan SWCNT sejajar dilaporkan. Penjajaran SWCNT ditakrifkan oleh tiub nano karbon tunggal sejajar antara fabrikasi elektrod. Kajian ini melibatkan kajian SWCNTs penyebaran, penjajaran SWCNT antara elektrod mikrogap dan pencirian tentang kesan perubahan dalam tahap pH pada galangan, kekonduksian dan kapasitan SWCNT yang sejajar. Dalam kajian penyebaran SWCNT, SWCNTs telah tersebar dalam Isopropyl Alkohol (IPA), Diklorometan (DCM), Aseton dan Triton X-100 larutan. Proses ini telah mendapati bahawa SWCNT bersurai terbaik dalam penyelesaian IPA kerana SWCNTs tersebar kekal yang dan dapat dilihat daripada larutan yang jernih walaupun selepas 14 hari berbanding dengan DCM, aseton dan Triton X-100. Sebaliknya, yang SWCNTs dalam DCM, aseton dan Triton-X 100 telah menunjukkan SWCNT beku selepas 14 hari dari penyebaran. Sebuah topeng krom yang terdiri daripada 6 kumpulan dengan ukuran jurang yang berbeza direka bentuk. Setiap kumpulan mempunyai 5 reka bentuk yang berbeza untuk memudahkan penjajaran SWCNT. Selepas itu, alat-alat yang telah direka menggunakan bahan emas sebagai elektrod untuk meningkatkan kekonduksian elektrik dan ketelusan peranti. Kemudian itu SWCNT sejajar pada peranti direka dan menggunakan kaedah dielectrophoresis AC. Kaedah dielectrophoresis AC yang terlibat dalam kawalan voltan dan kekerapan untuk meningkatkan peluang penjajaran SWCNT antara mikrogap. Alat-alat telah dibawa ke pencirian elektrik sebelum dan selepas penjajaran SWCNT untuk membandingkan kesan ke atas kemuatan peranti dan telah mendapati bahawa kapasitan sebelum penjajaran SWCNT adalah lebih tinggi daripada selepas penjajaran SWCNT peranti. Sebelum penjajaran SWCNT, dielektrik peranti kapasitif adalah udara yang merupakan penebat yang lebih baik daripada SWCNT yang merupakan bahan semikonduktor. Fenomena ini adalah disebabkan oleh hakikat bahawa dielektrik penurunan medan elektrik dan kemuatan adalah berkadar songsang dengan medan elektrik. Sebaliknya, peranti telah diuji untuk impedans dengan menggunakan penyelesaian penampan pH. Sebagai nilai pH telah menurun, impedans juga telah menurun. Ion hidrogen didapati mengikat kepada kumpulan karboxyl SWCNT yang mewujudkan lubang-lubang yang positif dalam SWCNT yang seterusnya meningkatkan kekonduksian itu. Kesimpulannya, kajian ini berjaya menunjukkan proses untuk reka bentuk, fabrikasi dan ciri-ciri sensor berasaskan SWCNT.

Development and Fabrication of Carbon Nanotube (CNT) based pH Sensor

ABSTRACT

The development, fabrication and characterization of single-walled carbon nanotubes (SWCNTs) based pH sensor using aligned SWCNT were reported. The SWCNT alignment is defined by a single carbon nanotube aligned between the fabricated electrodes. This research involves the study of SWCNTs dispersion, alignment of SWCNT between microgap electrodes and characterization on the effect of change in the pH level on the impedance, conductance and capacitance of the aligned SWCNT. In the SWCNT dispersion study, the SWCNTs were dispersed in Isopropyl Alcohol (IPA), Dichloromethane (DCM), Acetone and Triton-X 100. It was found that SWCNT disperse best in the IPA solution because the dispersed SWCNTs have remained dispersed which can be observed from the clear solution even after 14 days as compared to DCM, acetone and Triton-X 100. On the other hand, the SWCNTs in DCM, acetone and Triton-X 100 have shown a thick mass of coagulated SWCNT after 14 days of dispersion. A chrome mask which consists of 6 groups with different gap measurement was designed. Each group has 5 different designs to facilitate the SWCNT alignment. After that, the devices were fabricated using gold material as electrode to increase the electrical conductivity and permittivity of the device. The SWCNT was then aligned on the fabricated devices using AC dielectrophoresis method. The AC dielectrophoresis method involved control in the voltage and frequency to increase the chance of SWCNT alignment between the microgap. The devices were brought to electrical characterization before and after SWCNT alignment to compare the effect on the device capacitance. It was found that the capacitance before SWCNT alignment is higher than after SWCNT alignment of the device. Before SWCNT alignment, the dielectric of the capacitive device is air which is a better insulator than SWCNT that is a semiconductor material. This phenomenon is due to the fact that dielectric decrease electric field and capacitance is inversely proportional to electric field. On the other hand, the device was tested for its impedance using pH buffer solutions. As pH value was decreased, impedance has also decreased. The hydrogen ions were found to bind to the carboxyl group of the SWCNT creating positive holes in the SWCNT hence increasing its conductivity. As a conclusion, this research successfully demonstrated the process to design, fabricate and characterize the SWCNT based sensor.

CHAPTER 1

BACKGROUND

1.1 Introduction

Single-walled carbon nanotube (SWCNT) based sensor is a new sensing materials and technologies. Generally, the detection mechanism was based on the change in electrical field of the SWCNT aligned between the two electrodes gap when a solvent was applied. SWCNT has many distinct properties that may be exploited to develop next generation of sensors. In this research, a Titanium/Aurum (Ti/Au) microgap electrode based sensors were fabricated to obtain higher sensitivity detection using real time measurement. The silicon dioxide (SiO₂) is formed using the dry oxidation process and Ti/Au layer is deposited using the thermal evaporator. The device was then patterned by using a chrome mask through standard photolithography process. After that, the device was brought to SWCNT alignment using the AC dielectrophoresis method. The SWCNT used were purchased from Sigma Aldrich. After the SWCNT was aligned between the electrode pads, a droplet of 10 μ l from varying pH buffer solutions was dropped onto the SWCNT to obtain the conductivity, impedance and capacitance of the device. The electrical characterization was done by using the dielectric analyzer probing system.

1.2 Problem Statement

CNT have become the subject of intense investigation on electrical, mechanical, electromechanical and chemical properties. For CNT, it is divided into two major categories which are single walled-carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs).

In CNT dispersion, it is hard to be dispersed in liquids like deionized water (DI water), oil, and polymer. It was found that the ultrasonic is a good method to obtain a dispersed CNT solution. Recently, a dispersion study of MWCNT with solvents such as Triton X-100, Tween 20, Tween 80, and Sodium Dodecyl Sulfate (SDS) has shown that Triton X-100 and SDS provide maximum and minimum dispersion respectively (Rastogi, et al., 2008). Another work was done on the dispersion by using Triton X-100 surfactant on functionalized MWCNT in the different mixtures of nitric, sulphuric, and hydrochloric acids (Randhawa, et al., 2012). Even though the number of CNT could be controlled, but most of the MWCNT aligned had metallic properties.

On the other hand, a single CNT aligned device has better sensitivity than a device that is aligned with a bundle of CNTs. Lai et. al. (2004), has shown that about feasible batch fabrication method for functional CNT sensors by using an automated injection system and produced CNT aligned in bundled results (Lai, Fung, Qu, Lei, & Li, 2004).

Recently, there are two categories for CNT attachment method which is direct growth and manual attachment of CNT on electrode pads. Both the methods were found to be effective in attaching CNT in the desired position. First of all, the growth technique of CNT is often applied. However, it requires some patterning of very tiny catalysts and high temperature on the exact position (Jang, Moon, Ahn, Lee, & Ju, 2004). However, it is extremely hard to get a uniform growth of CNT for each catalyst. Meanwhile, the manual attachment of CNT is a low cost and effective method of CNT attachment.

The material used as the electrode pad must have high thermal conductivity, low electrical resistivity and high sensitivity. In this research, the aluminum electrode pad has been used but it was substituted by gold to improve the sensitivity due to its better conductivity.

The microgap structured device was chosen to aid the SWONT alignment process instead of the field effect transistor due to the shorter fabrication steps were required. Moreover, the CNT alignment process itself is a big challenge which requires long duration of time in order to get the SWCNT properly aligned. otectedby

1.3 Research Objective

The aim of this research is to design, fabricate, and characterization CNT sensor device based on Single walled Carbon Nanotube (SWCNT) aligned by using AC Dielectrophoresis Method for electrical testing by different pH buffer solutions.

However, the specific objectives of this research can be summarized as below:

- i. To investigate the effect of dispersion of SWCNTs in various type of solvents such as IPA, DCM, Acetone, and Triton X-100.
- ii. To study the AC Dielectrophoresis Technique in order to align Single-Walled Carbon Nanotube (SWCNT) between Aurum electrode gaps.
- iii. To characterize the alignment of SWCNT sensor device from morphological aspects.

iv. To analyze the electrical characterization for before and after SWCNT alignments by apply different concentration of pH buffer solutions in certain condition.

1.4 Research Scope

This research work is embarked based on the following scopes, and each scope addressed in details.

This research is started with a mask design created using AutoCAD tool software. Then, the design sent over to a manufacturing company to transfer the design onto a chrome mask.

In the second scope, the fabrication process of SWCNT sensor with gap less than 10 μ m is developed and optimized. Conventional photolithography technique is used to fabricate the device.

Next, the third scope is dispersion for debundling was studied and determined for alignment process.

The fourth scope for this research is a single strand of SWCNT was aligned properly between the electrode gap by using AC Dielectrophoresis Method through precise control of the voltages and frequencies.

Finally, the last scope is characterization and optimization of the fabricated device. Optical Microscope, Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscope (AFM), Optical Microscope and 3D Profilometer are employed to observe the fabricated structures. The electrical measurement is performed on the fabricated sample using Dieelectric Analyzer to analyze before and after SWCNT alignment with different values of pH buffer solutions.

1.5 Thesis Overview

This thesis consists of 5 chapters. The first chapter provides an introduction of this research to readers. The chapter includes the objectives and the project scopes of this research.

The chapter 2 is the literature review of carbon nanotubes (CNTs) based sensor with emphasis on development of CNTs based sensor, including properties of CNTs, CNTs dispersion, CNTs alignment, CNTs application, and fabrication technologies employed.

The chapter 3 describes the process flow of the fabrication, SWCNTs dispersion, Single-Walled Carbon Nanotube (SWCNT) alignment, morphological characterization and electrical characterization.

The 4 chapter contains the results obtained and data analysis of this research. The results of morphological, dispersion results and electrical characterization of SWCNT sensor with different pH buffer solutions. The data obtained were tabulated and plotted into graph for analysis. Discussion and explanation based on the results are presented in this chapter.

Finally, chapter 5 is the conclusion for this thesis and incorporates the overview of the results in this thesis. There are some future work recommendations for this project as there is huge potential for further development and exploitation.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides the literature review of the development and fabrication of Carbon Nanotube (CNT) based sensor that has been done by some researchers. This chapter also includes the fundamental theories of CNT properties, several method of manual attachment of CNT, development of CNT sensor device and its applications. For CNT manual attachment, several methods such as micro scale fluidic channel (Yan, Li, Chen, Chan-Park, & Zhang, 2006), chemically modified adsorption (LeMieux, et al., 2008), top-down approach (Orofeo, Ago, Yoshihara, & Tsuji, 2009), and external electric field guidance (Ural, Li, & Dai, 2002) & (Zhang, et al., 2001) were explained. However, the method above only can produce in low device yield and still lack some practical application on a large scale.

2.2 Carbon Nanotubes

Carbon Nanotubes (CNTs), is a tube-shaped material, made of carbon, also called a carbon buckytubes with a cylindrical nanostructures. The cylindrical carbon nanotubes have huge potential in development and applications such as nano-electronics, optics and materials application. CNTs was discovered by NEC Corporation of Japan in 1991, Iijima (Iijima, 1991), who specialized in nanostructured materials. CNTs can be grow by chemical