DEVELOPMENT OF FUZZY PID CASCADE CONTROL SYSTEM FOR DIFFERENTIAL-DRIVE WHEELED MOBILE ROBOT

Note Satis B. Saton

2012

DEVELOPMENT OF FUZZY PID CASCADE CONTROL SYSTEM FOR DIFFERENTIAL-DRIVE WHEELED MOBILE ROBOT

tern MOHD SAIFIZI B. SAIDON (0830610314)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Mechatronic Engineering)

> School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

> > 2012

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS		
Author's full name :	MOHD SAIFIZI BIN SAII	<u>20N</u>
Date of birth :	23 SEPTEMBER 1983	
Title :	DEVELOPMENT OF FU DIFFERENTIAL-DRIVE	ZZY PID CASCADE CONTROL SYSTEM FOR WHEELED MOBILE ROBOT
Academic Session :	2011/2012	ient
I hereby declare that the at the library of UniMAP.	thesis becomes the property of This thesis is classified as :	Universiti Malaysia Perlis (UniMAP) and to be placed
CONFIDENTIAL	(Contains confidential in	formation under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted inf research was done)*	ormation as specified by the organization where
/ OPEN ACCESS	I agree that my thesi copy or on-line open acc	s is to be made immediately available as hard cess (full text)
I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of years, if so requested above).		
Certified by:		
SIGNATURE SIGNATURE OF SUPERVISOR		
<u>830923-09-5013</u> (NEW IC NO. / PASSPORT NO.)		Assoc. Prof. Dr. Hazry Desa NAME OF SUPERVISOR
Date : <u>5 JUN</u>	<u>IE 2012</u>	Date : <u>5 JUNE 2012</u>

ACKNOWLEDGEMENT

First of all, I would like to acknowledge the contributions of the many people who provided invaluable help and support for the completion of this thesis. My supervisor, Assoc. Professor Dr. Hazry Desa, deserve thanks for not only guiding me with a steady hand, but also leaving me the freedom to pursue my own research interests. He has given me invaluable suggestions with my research both patiently and generously. He guided me to conduct scientific research as well as theoretical studies. Without the correct directing and financial support of Dr. Hazry Desa, I wouldn't have finished my thesis research and writing. Special thanks as well to my co-supervisor, Assoc. Professor Paul Raj MP, and Assoc. Professor Dr. Abdul Hamid Adom, who gave me so many precious advices and suggestions. I would like to say thanks to Professor Dr. Mohd Zaki Abd Muin, who seemed always ready to help me with my control systems problems. I also have to thank to the researchers at Autonomous Systems and Machine Vision and School of Mechatronic, University Malaysia Perlis has provided a supportive and enjoyable environment in which to study and work. I thank all the school, staff and students here sincerely. On a personal front, I am forever indebted to my family for my continued study. Special thanks to my my wife and my family who have provided both moral and financial support over the period of my education. Without all their love and support, I wouldn't have been able to finish this thesis.

TABLE OF CONTENTS

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATION	xiii
LIST OF SYMBOLS	XV
ABSTRAK	xviii
ABSTRACT	xix
CHAPTER 1- INTRODUCTION	
1.1 Problem Statements	4
1.2 Scope of Research	6
1.3 Objectives	7
1.4 Structure of the Thesis	7
CHAPTER 2- LITERATURE SURVEY	
2.1 Robotic	9
2.1.1 Mobile Robot	10
2.2 Control System of Mobile Robot	13

2.2.1 Fuzzy Logic Controller 14

	2.2.2	Proportional-Integral-Derivative (PID) Controller	17
2.3	Sensir	ng System	20
	2.3.1	Vision Sensing for Door Recognition	21
	2.3.2	Sonar Sensing for Obstacles Detection	25
CHA	APTER 3	- DEVELOPMENT OF MOBILE ROBOT	28
CHA	APTER 4	- LANDMARK RECOGNITION BY USING FUZZY APPROACH	
4.1	Landn	nark Recognition System Architecture	40
4.2	Door l	Detection Algorithm	42
	4.2.1	Canny Edge Detector	44
	4.2.2	Line Detection	47
	4.2.3	Circle Detection	50
	4.2.4	Distance and Orientation of Landmark	52
	4.2.5	Fuzzy Logic For Door Recognition	54
4.3	Result	s and Discussions	61
	4.3.1	Experiments	61
	4.3.2	Discussions	63
4.4	Concl	usion	65

CHAPTER 5- CONTROL SYSTEMS FOR MOBILE ROBOT

5.1	Kinematic Model of the Nonholonomic Mobile Robot		68
	5.1.1 Differential Steering System		70

5.2	Path Tracking Control for the Mobile Robot	78
5.3	Master Controller	80
	5.3.1 Controller Input for Target Trajectory	80
	5.3.2 Controller Input for Obstacles Avoidance	83
	5.3.3 Controller Output	87
5.4	The Proposed PID Controller	89
	5.4.1 Experimental Based Method	90
	5.4.2 Model Based Method	94
5.5	Gain Scheduling	103
5.6	Results & Discussions	104
	5.6.1 Experiments	104
	5.6.2 Discussions	113
5.7	Conclusion	121
	.59	
CHA	PTER 6- CONCLUSION AND FUTURE WORK	
6.1	Conclusion	123
6.2	Future Work	125
REF	ERENCES	127
APPE	ENDIX A	135
APPF	ENDIX B	136

APPENDIX C	137
APPENDIX D	139
APPENDIX E	145
APPENDIX F	152
APPENDIX G	153
APPENDIX H	154
APPENDIX I	155
APPENDIX	156
UIST PUBLICATIONS	158

vi

LIST OF TABLES

NO.	P	AGE
3.1	Mechanical specification of the mobile robot	30
3.2	Computer specification of the mobile robot	30
3.3	Computer specification of the mobile robot	30
3.4	Relation between encoder pulses and DC motor speed	32
4.1	Rules for a three-input door fuzzy detection	59
4.2	Experimental results for the calculation of the distance to a landmark	63
4.3	Experimental results for the calculation of the angle orientation to a landmark	64
5.1	Rules table for the target trajectory steering system	83
5.2	Rules table for the obstacles avoidance steering system	86
5.3	The results of the PID auto-tuning for right wheel and left wheel	93
5.4	The result of the PID modeling based tuning for right wheel and left wheel	103
5.5	Left DC motor with second order model parameters approximation	106
5.6	Right DC motor with second order model parameters approximation	106
5.7	Ceft DC motor estimated second order model and ZOH/FOH parameters	110
5.8	Right DC motor estimated second order model and ZOH/FOH parameters	111
5.9	The orientation of the robot when arrived at target	119
5.10	The distance of the robot when arrived at target	119
5.11	The time taken by robot arrived at target	120

NO.	PA	GE
2.1	Fuzzy controller (redrawn from [3])	14
3.1	Mobile Robot "MAR"- Front View	28
3.2	Mobile Robot "MAR"- Side View	29
3.3	Duty cycle vs. Speeds graph for DC motor speed	31
3.4	DC Motor Integrated with Optical Encoder	32
3.5	Camera Sensor or Landmark Recognition	33
3.6	Characteristics for the EZ1 Ultrasonic Sensor	35
3.7	The Layout of Sensors on the Mobile Robot	36
3.8	Block Diagram of Labview Programming	37
3.9	Front Panel of Labview Programming	38
4.1	Approach for door recognition using computer vision	39
4.2	Door as a landmark for mobile robot navigation	41
4.3	Block diagram of the Canny edge detector	44
4.4	(a) Original image (b) edge detection result using the Canny edge detector	46
4.5	The steps of line detection process seen in (a) original image (b) Canny	47
	detector and (c) Hough Transform line fit	
4.6	Line is fit to a set of points using (a) the Hough Transform and (b) least squares	48
4.7	Parametric polar form of a straight line using r and θ	49

NO.		PAGE
4.8	Circle detection using geometric feature matching	52
4.9	The projection of the circle onto the camera image plane	53
4.10	Possible consideration of door recognition	55
	(a) two frame edge at left side with a circle	
	(b) two frame edge at left side with a circle	
	(c) One of the frame edge at both sides with a circle	
4.11	Input membership functions for vertical line 1	57
4.12	Input membership functions for center circle	57
4.13	Input membership functions for vertical line 2	58
4.14	Output membership functions for door detection	60
4.15	Experiment setup for distances calibration of vision system	61
4.16	Experiment setup for orientation calibration of vision system	62
4.17	The result of door detection using Fuzzy Logic	65
5.1	Posture of mobile robot's wheel	69
5.2	The differential moving possibilities for differential steering system	71
5.3	The example of differential steering system driving motion	72
5.4	Wheel of the mobile robot	74
5.5	Differential steering system of the mobile robot	76

NO.		PAGE
5.6	A cascade control system for target trajectory	79
5.7	A cascade control system for obstacle avoidance	80
5.8	Block diagram of the fuzzy logic controller for target trajectory	81
5.9	Input membership functions for target distance Dt	82
5.10	Input membership functions for desired angle θ_d	82
5.11	Block diagram of Fuzzy controller for obstacles avoidance	84
5.12	Input membership function for distance between robot and obstacles	85
5.13	Obstacle avoidance behavior for the obstacle on the left side	87
5.14	Output membership functions for the speed	88
5.15	Output membership functions for the angular speed	89
5.16	Relay control (On/Off control) used in autotuning	91
5.17	PID autotune wizard for PID parameters tuning	92
5.18	Open-loop motor model	95
5.19	Feedback control system	98
5.20	Block diagram of a system with gain scheduling	104
5.21	Collection of filtered and non-filtered step response experiment data	105
5.22	Step response for estimated model of 5-7 duty cycles. Left wheel:	108
	measurement blue, FOH model red, right wheel: measurement green,	
	FOH model <i>purple</i>	

NO.		PAGE
5.23	Step response for estimated model of 10-12 duty cycles. Left wheel:	108
	measurement blue, FOH model red, right wheel: measurement green,	
	ZOH model <i>purple</i>	
5.24	Step response for estimated model of 12.5-15.5 duty cycles. Left wheel:	109
	measurement blue, ZOH model red, right wheel: measurement green,	
	ZOH model <i>purple</i>	
5.25	Step response for estimated model of 12.5-15.5 duty cycles. Left wheel:	109
	measurement blue, FOH model red, right wheel: measurement green,	
	FOH model <i>purple</i>	
5.26	The sensor data for the tuning process of the ultrasonic sensors	112
5.27	Time response of left wheel speed with 195 [RPM] step input,	114
	Fast Tuning blue, Normal Tuning red, Modeling Base Tuning green	
5.28	Time response of left wheel speed with 165 [RPM] step input,	115
	Fast Tuning blue, Normal Tuning red, Modeling Base Tuning green	
5.29	Time response of left wheel speed with 105 [RPM] step input,	115
	Fast Tuning blue, Normal Tuning red, Modeling Base Tuning green	
5.30	Time response of left wheel speed with 30 [RPM] step input,	116
	Fast Tuning blue, Normal Tuning red, Modeling Base Tuning green	

	PAGE
Time response of right wheel speed with 195 [RPM] step input,	116
Fast Tuning blue, Normal Tuning red, Modeling Base Tuning green	
Time response of right wheel speed with 165 [RPM] step input,	117
Fast Tuning blue, Normal Tuning red, Modeling Base Tuning green	
Time response of right wheel speed with 105 [RPM] step input,	117
Fast Tuning blue, Normal Tuning red, Modeling Base Tuning green	
Time response of right wheel speed with 30 [RPM] step input,	118
Fast Tuning <i>blue</i> , Normal Tuning <i>red</i> , Modeling Base Tuning <i>green</i>	
	Time response of right wheel speed with 195 [RPM] step input, Fast Tuning <i>blue</i> , Normal Tuning <i>red</i> , Modeling Base Tuning <i>green</i> Time response of right wheel speed with 165 [RPM] step input, Fast Tuning <i>blue</i> , Normal Tuning <i>red</i> , Modeling Base Tuning <i>green</i> Time response of right wheel speed with 105 [RPM] step input, Fast Tuning <i>blue</i> , Normal Tuning <i>red</i> , Modeling Base Tuning <i>green</i> Time response of right wheel speed with 30 [RPM] step input, Fast Tuning <i>blue</i> , Normal Tuning <i>red</i> , Modeling Base Tuning <i>green</i>

xii

LIST OF ABBREVIATIONS

ECE	Economic Commission for Europe
MAR	Mobile Autonomous Robot
AI	Artificial Intelligence
PID	Proportional+Integral+Derivative
MDARS	Mobile Detection Assessment and Response System
PWM	Pulse Width Modulation
FOV	Field of View
GUI	Graphical User Interface
SIFT	Scale Invariant Feature Transform
VL1	Vertical Line 1
VL2	Vertical Line 2
c .s P	Center Circle
COA	Center of Area
ICC	Instantaneous Center of Curvature
ICR	Instantaneous Center of Rotation
DAQ	Data Acquasition
ZOH	Zero Order Hold
FOH	First Order Hold
FLC	Fuzzy Logic Controller
neglarge	Negative Large
negsmall	Negative Small

possmall

Positive Small

poslarge

Positive Large

o this item is protected by original copyright

LIST OF SYMBOLS

r(t)	Reference input
u(t)	Input
<i>y</i> (<i>t</i>)	Output
$\phi_{\scriptscriptstyle L}$	Left wheel rotation per seconds
$\phi_{\scriptscriptstyle R}$	Right wheel rotation per seconds
N_R	Numbers of encoder per revolution
x_L	Number of encoder pulses for left wheel
x_R	Number of encoder pulses for left wheel
V	Speed
ω	Angular Speed
<i>T2</i>	Low-threshold
Τ1	High-threshold
Т	Global single thresholding
σ	Standard deviation of the Gaussian filter
r_{H}	Normal from the line to the origin
$\theta_{\rm H}$	Angle the normal
(<i>x</i> , <i>y</i>)	Coordinate
C_p	The intensity of the pixel
D_t	Target distance
heta c	Circle orientation
n	Constants derived from the camera calibration

С	Constants derived from the camera calibration
X _{center}	<i>x</i> -axis center of circle
x	Diameter of circle
K_p	Proportional Gain
T_i	Integeral Time
T_d	Derivative Time
θ	Angle
u_R	Speed of right wheel
<i>u</i> _L	Speed of left wheel
ω	Angular Speed of robot
и	Speed of robot
d	Distance from center of body to the center of the left wheel or right wheel
<i>ṗ</i>	Posture of mobile robot
J	Wheel Jacobian Matrix
W	World coordinate system denoted
R	X-axis of robot coordinate system
θ_d	Desired orientation
T_u	Ultimate period
P_u	Ultimate gain
K	Gain
Ľ	Damping ratio
\mathcal{O}_n	Natural frequency, rad/s
T_s	Time sampling

- *K_i* Integral gain
- *K*_d Derivative gain

o this term is protected by original copyright

PEMBANGUNAN SISTEM KAWALAN ALIRAN KABUR-PID BAGI PERBEZAAN PEMANDUAN BERODA ROBOT MUDAH ALIH

ABSTRAK

Kajian ini memberi tumpuan kepada pelaksanaan sistem kawalan robot autonomi mudah alih pintar yang dipanggil Mobile Autonomous Robot (MAR). Robot disasarkan untuk penggunaan tertutup, memainkan peranan sebagai panduan atau kakitangan keselamatan di kilang-kilang, gudang, muzium dan pejabat. Ia mempunyai dua roda memandu dikuasakan oleh dua motor yang bebas untuk memandu dan stereng masing-masing. Setiap AT motor dikawal oleh modulasi lebar denyut (PWM) motor pengawal. Satu sistem kawalan aliran telah dilaksanakan untuk mengawal pergerakan robot, dan ia terdiri daripada pengawal induk dan dua pengawal hamba bagi setiap AT motor. Pengawal induk adalah Pengawal Logik Kabur (FLC) untuk mengira kelajuan dan kelajuan sudut yang diperlukan oleh kedua-dua motor. Satu sistem penglihatan digunakan sebagai pengesan untuk gerakan robot. Logik kabur digunakan untuk menjana sasaran gerakan trajektori dengan maklumat yang diekstrak daripada sistem penglihatan seperti jarak sasaran dan orientasi sasaran. Penanda yang dipilih adalah pintu kerana pintu adalah satu objek yang sangat biasa dalam persekitaran tertutup dan pengesanan pintu membolehkan robot untuk melakukan tugastugas seperti navigasi dan laluan perancangan. Kerja ini membentangkan pendekatan yang menggunakan penglihatan pengkomputeran yang mengaplikasikan teknik Penjelmaan Hough dan teknik Penyamaan Sifat selepas imej tersebut diproses menggunakan pengesan pinggir Canny. Kedua-dua pengawal hamba adalah Kadaran - Kamiran - Terbitan (PID) pengawal yang memastikan kelajuan yang diingini diperoleh oleh roda. Dua kaedah telah digunakan bagi pengiraan nilai-nilai yang betul bagi PID. Iaitu menggunakan kaedah eksperimen dan kaedah model. Kaedah eksperimen menggunakan kaedah Zigler-Nichols talaan automatik tanpa mengetahui sifat loji yang hendak dikawal. Dalam kaedah berasaskan model, model matematik bagi motor diterbitkan terlebih dahulu dan ia digunakan untuk mereka bentuk pengawal PID. Parameter pengawal PID telah ditala mengikut empat julat kelajuan. Parameter pengawal PID bagi kedua-dua AT motor ditalakan secara automatik menggunakan Gain Scheduling yang berasaskan kepada empat julat kelajuan. Perbandingan telah dibuat untuk melihat prestasi robot mudah alih yang menggunakan parameter PID yang ditala oleh kedua-dua kaedah. Dalam kajian ini, logik kabur juga digunakan untuk menjana teknik mengelakkan halangan dengan maklumat yang diekstrak daripada pengesan ultrasonik. Prestasi keseluruhan robot apabila berpindah ke sasaran menunjukkan bahawa purata ralat relatif adalah kurang daripada 0.03 meter bagi jarak dan ralat relatif purata untuk orientasi adalah kira-kira 20° apabila tiba pada robot mencapai sasarannya. Purata masa yang diambil oleh robot untuk tiba di sasaran dalam 1 meter kira-kira 23 saat.

DEVELOPMENT OF FUZZY-PID CASCADE CONTROL SYSTEM FOR DIFFERENTIAL-DRIVE WHEELED MOBILE ROBOT

ABSTRACT

This study focuses on the control systems implementations of an intelligent autonomous mobile robot called Mobile Autonomous Robot (MAR). The robot is targeted for indoor usage, assume the role of a guide or security personnel in factories, warehouses, museums and offices. It has two driving wheels powered by two independent motors for drive and steering respectively. Each DC motor is controlled by a pulse width modulation (PWM) motor controller. A cascade control system has been implemented to control the movement of the robot, and this consists of a master controller and two slave controllers for each DC motor. The master controller is a Fuzzy Logic Controller (FLC) which computes the required speed and angular speed needed by the two motors. A vision system is used as the sensor for the robot motion. Fuzzy logic is applied to generate target trajectory movement with the information extracted from vision system such as the distance of target and the orientation of target. The landmark selected is a door because the door is a very common objects in indoor environments and the detection of a door allows a robot to do tasks such as navigation and path planning. This work presents an approach using computer vision which applies Hough Transform and Feature Matching technique after the image has been process using Canny edge detector. The two slave controllers are Proportional-Integral-Derivative (PID) controllers which ensure the desired speeds are obtained at the wheels. Two methods are used in calculating proper values of the PID. These are experimental method and model based method. The experimental method uses the Zigler-Nichols autotuning method without any knowledge about the plant to be controlled. In the model based method a mathematical model of the motors are first derived and this is used to design the PID controller. PID controller parameters were tuned according to four ranges of speeds. The PID controller parameters for both DC motors are auto-tuned using Gain Scheduling based on four ranges of speeds. Comparison was made to see the performance of the mobile robot using the PID parameters tuned by the two methods. In this study, fuzzy logic is also applied to generate obstacle avoidance techniques with the information extracted from ultrasonic sensors. Overall performance of the robot when moving to the target shows that the average relative error is less than 0.03 meter for distance and the average relative error for orientation is about 20° when arrived at the robot achieves its target. The average time taken by the robot to arrive at the target in 1 meter is approximately 23 seconds.

CHAPTER 1

INTRODUCTION

Mobile robot has received much attention from scientists and academics over the past two decades. The increased processing capacity and the availability of inexpensive electronic components have contributed to the advancement of mobile robotics to a level of maturity that allows further development. This is especially true since the expected demands for service robotics are increasing,

A robot is autonomous systems used are able to sense its environment and act accordingly to achieve the goals. The main defining characteristic of an autonomous robot is the ability to act on their own decision, and not through the control of a human being (Mataric, 2007).

Navigation is the mechanism in a precise position to identify, plan and follow a path. In robotics, navigation refers to the technique of a robot made its way into the environment (Mataric, 2007) and is a common need and a requirement for almost all mobile robots.

Robot navigation is a vast and can be divided into subcategories for a better understanding of the issues. Leonard and Durrant-Whyte, 1991 outlines the general problem of navigation of mobile robots to three questions, each on a sub-category:

• Where am I?

This issue is the problem of the location can be express as follows: A robot is an unknown position in environment in which it has a map. It "sees" on its position, and based on the observations must infer the place on the map where it could be located (Guibas and Motwani, 1995).

• Where do I go?

The assignment problem consists of a robot living in an unfamiliar environment that has no map, and navigating through it allows the creation of a map display. The robot must identify the specific characteristics of the landmarks of the environment, to recognize that the obstacles are.

• How to get there?

The problem of path planning indicates a general desired to find paths between different locations in an environment based on objective and constraints.

One of the main drivers of the market for robotic automation service is the inner core. As the 2005 World Robotics surveys prepared by the Economic Commission for Europe (ECE) (International Federation of Robotics, 2005) - estimated that the projected sales of domestic robots for the next period 2004-2007 to 4.5 million units. For the same period, the survey also reports a similar trend also in robotics solution for professional use. A figured 50 thousand the number of new facilities. Robotics professional applications with strong growth include underwater systems, medical systems, defense and rescue and security applications.

The world of robotics is one of the most interesting areas that have gone through constant innovation and evolution. Robotics is interdisciplinary and has become increasingly a part of our lives. Many reasons justify this sudden increase in the use of robotics. Among those is the quest for increase productivity, the transfer of dangerous and laborious tasks from man to machine, as well as improving quality of life (International Federation of Robotics, 2005). The increase is also in part attributed to the international climate and the need for improving security of airports, public institutions, and private facilities such as factory and utility plants.

Autonomous navigation is the most important topic of study periods of artificial intelligence, various approaches have been tried to solve navigation problems (Brooks, 1986). The researchers have done studies to both holonomic and nonholonomic mobile robots. Autonomous navigation is related to the ability of a mobile robot to move in an environment that is available to achieve a goal, without interacting with humans. The mobile robot is guided by the information obtained during the online navigation is running. To do this task requires a different ability to perform actions that lead to goal achievement. A mobile robot, competent to avoid contact with objects, traveling without hitting things, exploring the world, places to see in the distance and voice seem to reach for them, building the environment map and plan routes from one place to another. The system is in its surroundings. It is directly related to the problem domain through sensors and effectors. The system can change and the effect of its environment through effectors reacts instantly. The problem domain can be a dynamic environment and the system can react in a limited time. The system environment is a complex real-world environment. No assumption is made for the environment. The system is fully autonomous. It must monitor the problem domain, the real world and determine what the problem is solved, and how to solve it. Moreover, the system must handle multiple issues simultaneously.