Properties of styrene butadiene rubber/recycled acrylonitrilebutadiene rubber (SBR/NBRr) blends: Effect of the addition of transpolyoctylene rubber

Abstract

This study investigated polymer blends based on different ratios of styrene butadiene rubber and recycled acrylonitrile butadiene rubber (NBRr) with and without trans-(SBR) polyoctylenerubber (TOR) as a compatibilizer. Five compositions of SBR/NBRr/TOR were prepared: 95/5/5, 85/15/5, 75/25/5, 65/35/5, and 50/50/5. Rheological characteristics, tensile and physical properties, and the morphological behavior of compatibilized and uncompatibilized SBR/NBRr blends were determined. The rheological characteristics indicated that compatibilized SBR/NBRr blends had a shorter cure time (t 90) than uncompatibilized SBR/NBRr blends. The compatibilized SBR/NBRr blends showed lower minimum torque (M) when compared with as uncompatibilized SBR/NBRr blends, indicating that compatibilization improved the processability of the blends. However, the maximum torque (M_H) of compatibilized SBR/NBRr blends was higher than that of uncompatibilized SBR/NBRr blends. The incorporation of TOR improved the tensile strength, tensile modulus (M100), hardness, and crosslinked density of compatibilized SBR/NBRr blends. However, the elongations at break (E b) and resilience of compatibilized SBR/NBRr blends were lower as compared to uncompatibilized SBR/NBRr blends. Scanning electron microscopy of the tensile fractured surfaces demonstrated that the addition of TOR in SBR/NBRr blends improved the adhesion between NBRr and the SBR matrix, thus improving the compatibility of SBR/NBRr blends.