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Abstract: In recent years, there have been a number of reported studies on the use of  
non-destructive techniques to evaluate and determine mango maturity and ripeness levels. 
However, most of these reported works were conducted using single-modality sensing 
systems, either using an electronic nose, acoustics or other non-destructive measurements. 
This paper presents the work on the classification of mangoes (Magnifera Indica cv. 
Harumanis) maturity and ripeness levels using fusion of the data of an electronic nose and 
an acoustic sensor. Three groups of samples each from two different harvesting times (week 
7 and week 8) were evaluated by the e-nose and then followed by the acoustic sensor. 
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to 
discriminate the mango harvested at week 7 and week 8 based solely on the aroma and 
volatile gases released from the mangoes. However, when six different groups of different 
maturity and ripeness levels were combined in one classification analysis, both PCA and 
LDA were unable to discriminate the age difference of the Harumanis mangoes. Instead of 
six different groups, only four were observed using the LDA, while PCA showed only two 
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distinct groups. By applying a low level data fusion technique on the e-nose and acoustic 
data, the classification for maturity and ripeness levels using LDA was improved. However, 
no significant improvement was observed using PCA with data fusion technique. Further 
work using a hybrid LDA-Competitive Learning Neural Network was performed to validate 
the fusion technique and classify the samples. It was found that the LDA-CLNN was also 
improved significantly when data fusion was applied. 

Keywords: electronic nose; acoustic sensor; volatiles; mango ripeness classification 
 

1. Introduction 

The perceived quality of mangoes is greatly dependent on their time of harvest and normally the 
quality is set according to their maturity stages. It has been widely known that there are many 
parameters can be used to determine maturity stages [1]. These include age, size, skin colour, firmness, 
and smell. Mango is a climacteric fruit, which means that its internal biochemical changes occur 
during respiration and it may still undergo further changes after it has been harvested. Volatile 
compounds, such as ethylene and aromatic hydrocarbons (terpene hydrocarbons) are released during 
the ripening process [2,3] and these contribute to the characteristic mango aroma. Generally, during 
maturity stages, the fruits experience a rapid burst in ethylene release, a sharp rise in carbon dioxide 
production and a decrease in oxygen levels [4,5]. This characteristic allows the possibility of 
predicting the optimal harvest date by looking at the odour patterns (often referred to as the 
‘smellprint’) of the fruit’s volatile compounds using an e-nose. In the case of Harumanis mangoes, the 
use of smell as a maturity indicator is a better option compared to visual and colour inspection. As 
illustrated in Figure 1, the skin colour of the Harumanis is not an appropriate parameter to determine 
the maturity and ripeness levels. 

Figure 1. The skin colour of two different maturity stages, week 8 day 1 and week 8 day 7. 

 
 
A number of successful studies on the use of e-nose to determine the maturity and ripeness stages of 

mangoes and several climacteric fruits have been reported [6–11]. In this paper however, the aim is to 
evaluate the robustness of maturity and ripeness classification using PCA and LDA. Two batches of 
Harumanis samples were harvested at week 7 (Green) and week 8 (Mature), and kept for 1 day at room 

Week 8 day 1 Week 8 day 7 
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temperature (27 °C) to homogenize before the measurements of the volatile compounds of the 
mangoes were taken on day 2, 4 and 7 after the harvest. When the volatiles data were classified using a 
global classification method, it is clear that the e-nose alone was insufficient to classify the small 
differences between maturity or ripeness levels of Harumanis mangoes. The classification method can 
be improved by adding more sensing parameters from different modalities. 

The perceived quality of a mango also includes its texture and firmness. It is also one of the 
parameters in deciding whether the fruits have ripened and ready for consumption [12]. Firmness can 
be determined either destructively using a penetrometer or using non-destructive sensing such as 
acoustic sensors. 

Furthermore, multi-modality sensor fusion was reported to give better classification of fruit 
maturity levels compared to a single modal system [13]. Natale [14] has successfully implemented a 
system to classify peaches based on the fusion of e-nose and visible optical spectroscopy data. 

In this investigation, the classification of Harumanis mangoes maturity and ripeness levels were 
determined by combining e-nose and acoustic sensor data using a low level fusion technique. This 
combination is able to provide additional information and allows for better classifications of the 
maturity and ripeness levels of the mangoes.  

This sensor fusion is performed by combining the information provided by different sensors in 
different modalities. It is introduced when data from two or more sensors are combined and mimicking 
the biological system. For example, sensor fusion of two different modalities such as e-nose and 
acoustics mimics the human sensory system in perceiving fruit maturity and ripeness levels. Similarly, 
fruit eating bats use a combination of odour-guided detection together with echolocation to distinguish 
the ripe fruits [15]. In essence, this technique allows the proposed system to mimic the consumer 
preferences in choosing the optimal quality of mangoes [16]. 

This paper describes the low level fusion of e-nose and acoustic data for the improved classification 
of different maturity and ripeness levels using PCA and LDA. Further classification was also 
performed using LDA-CLNN to validate the fusion technique and further classify the samples. 

2. Materials and Methods 

2.1. Sample Selection 

In Perlis, Malaysia, Harumanis mangoes are usually harvested from the end of April until the 
middle of June. Typically, they are harvested between 60–120 d past flowering or about 8 weeks after 
the fruits reach the size of approximately 4 cm in diameter. Subsequently, the mangoes will be 
classified by trained personnel into six different categories based on physical size and appearance  
(as well as estimated maturity stages) as shown in Table 1. In this study, two batches were acquired 
from the Perlis State Department of Agriculture. Each batch contained fruits from two different 
harvesting dates [week 7 (Stage 0) and week 8 (Stage 1)] and each stage has 60 mango samples, thus 
in total, 240 mangoes were obtained for this experiment. Each stage was split into two different 
groups, whereby 14 mango samples (for each stage 0 and stage 1) were isolated and labelled as test 
samples and used for biochemical measurements using a destructive method. In total, 56 mango 
samples (for both batches) were used for the e-nose and acoustic measurements. The rest of the 
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samples were used as a control sample for the e-nose and acoustic measurements. As the mango 
ripens, only the good samples were selected for the control measurements. The number of mango 
samples used for the e-nose measurement is described in Table 2 and each measurement was repeated 
five times. All the mango samples weighed 430 (±50) g each were examined carefully to ensure that 
they were free from physical and external damage.  

Table 1. Description of maturity stages and ripeness level of Harumanis mangoes. 

Stage Age Description 
0 Week 0–7 Pre-mature; Not yet harvested. 
1 Week 8 (day 1) Mature; Can start harvesting.  

2 Week 8 (day 2) Mature; Right after being harvested, cleaned, warm water 
treatments, and sorted based on weight and skin cleanness. 

3 Week 8 (day 6) Early ripening; Artificial ripening with calcium carbide. 
Smooth skin, and slightly bleak. 

4 Week 8 (day 7) Nearly ripe; Smooth, slightly soft skin and having slightly 
sweet aromas. 

5 Week 9 (day 1) Optimum ripeness; Smooth skin, soft and strong sweet aromas. 

Table 2. Number of samples used in the e-nose, AFS measurement and biochemical measurements. 

Sample Batch Week 7 Week 8 
Day 2 Day 4 Day 7 Day 2 Day 4 Day 7 

Control Sample a 1 16 16 10 16 16 11 
2 16 16 8 16 16 10 

Test Sample b 1 14 14 14 14 14 14 
2 14 14 14 14 14 14 

a The same mangoes were used in day 2, 4 and 7 for non-destructive e-nose and acoustic measurement. 
b Destructive test and the mangoes were discarded after the pH and Brix measurements. 

2.2. Electronic Nose  

The experiments were carried out using a Cyranose 320 e-nose from Smiths Detection (Pasadena, 
CA, USA). It has been used in many applications including quality control for the food industry, 
hazardous material identification, biomedical sample discrimination, plant disease detection and many 
others [17–21]. The main components of an e-nose include the odour capture module, sensing 
elements, data pre-processing and pattern recognition algorithms. The sensing elements consist of a 32 
potentiometric sensor array made up of various conducting polymers, blended with carbon-black 
composite. These potentiometric sensors were designed to be partially selective. The combination of 
such sensors as an array introduces a cross sensitivity effect, which may even allow the discrimination 
and classification of complex volatile compounds [22,23]. The data collected and logged by the e-nose 
are the resistance values of the sensor array during contact with the volatile gases, which corresponds 
to the ‘smellprint’.  

The e-nose has to be configured before it can be used. The main configuration parameter is the gas 
exposure. The sniffing process comprises of four different cycles: (i) baseline recovery, (ii) sample 
draw, (iii) idle time and (iv) purging. The flow rate of this sniffing process (baseline recovery, sample 
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draw and purging) can be set at three different speeds (low: 50 mL/L, medium: 120 mL/L and high:  
160 mL/L). The detail of the sniffing process is discussed in Section 2.5.1 

2.3. Acoustic Firmness Measurements 

The mango firmness was measured using an AFS unit (AWETA G&P, Nootdorp, The Netherlands). 
This device employs an acoustic technique that provides a non-destructive measurement. The acoustic 
signal was generated by a solenoid plunger that gently taps the fruits. The tapping (ticking) power that 
controls the plunger can be adjusted by the AFS V2.0 software. At the same time, a small microphone 
embedded in the flange of this unit captures the acoustic vibration waveform and the maximum peak 
of the ticking sound. Also, a small load cell was used to measure the weight of the mango. 

This device has three main parameters: (i) microphone gain, (ii) ticking power and (iii) frequency 
range. Preliminary experiments were performed to obtain the optimal configuration setting. The most 
important parameters are the tick power versus microphone gain. The height of the scan in the ticking 
waveform must fit easily and must be ensured that the signal was not clipping. Table 3 shows the 
optimal configuration setting used in this experiment. 

Table 3. Optimal setting configuration for AFS. 

Parameters Value 
Measurements  3 
Average Method Mean 
Microphone gain 87 
Tick power 13.0 
Frequency 50–1,950 kHz 
Alternative firmness, Impact 
Min Valid Impact 1 
Max Valid Impact 500 
Min Valid Firmness 1 
Max Valid Firmness 100 

 
The AFS unit gives two different types of measurements. The firmness index (FI) is based on the 

acoustical measurement while the alternative firmness index (AFI) is based on the impact measurement 
that evaluates the local surface elasticity. The FI is defined as follows: 

FI = M2/3 × fo
2/scaling factor      (1) 

where fo is the resonance frequency and M is mass of mangoes. 

2.4. Sample Preparation 

Sample preparation is one of the most critical steps to ensure repeatable results. The volatile 
production might still vary with incubation time due to the small variations in the sample selection, 
such as weight, age and size. Thus, to obtain the optimal incubation time, three mango samples were 
picked from each of stage 0 and stage 1 for the initial experiment. Each sample was incubated inside 
the jar for 15 min and the odour measurements were repeated five times. Later, the same procedure 
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was repeated at 30 min and 45 min of incubation time. Preliminary experiments showed that 30 min is 
the optimum headspace equilibrium, with the right amount of volatile composition to give strong 
discrimination between immature, mature, nearly ripe and ripe samples. At 45 min of incubation time, 
small water droplets were seen inside the surface of the jar and the e-nose measurements were affected 
by the humidity. On the other hand, at 15 min incubation time, the noise level was rather large (results 
not shown) and there is no distinct variation in the e-nose measurement of different mangoes samples. 
Prior to the odour measurements, the mango sample was sealed in an air-tight acrylic jar. The jar was 
then purged with dry nitrogen gas and left for 30 min at 26 °C (room temperature) until the headspace 
of the jar equilibrated. The dynamic odour measurement setup is shown in Figure 2.  

Figure 2. Block diagram of odour data collection setup.  

 

2.5. Non Destructive Test (NDT) 

2.5.1. Odour Sampling 

The e-nose has four main parameters for the odour sampling process. The sequence of the odour 
sampling started with a baseline recovery, followed by a sample draw, idle and finally purging process. 
During purging, the sensor chamber was flushed with ambient air (filtered by activated charcoal to 
remove volatile organic compounds (VOCs) in the background ambient), and later switched to 
nitrogen gas (which was filled in a tedlar bag) during the baseline recovery. This method is required to 
obtain a consistent reference baseline [24]. During the purging and baseline recovery, the gases were 
purge through the purge outlet. During the sniffing process, the gases were switched back to the jar to 
maintain the concentration of the headspace in the jar. The same method was adopted by [25] to 
minimize the concentration drift effect. Electro-mechanical solenoid valves were used and manually 
controlled to switch the direction of the purging gases and headspace gases. 

Several sets of initial experiments were performed whereby the smellprint of 40 mango samples from 
two different maturity stages (Table 2) were compared over 15 s, 30 s and 50 s of sniffing time. The 
first readings were always discarded due to possible false readings from previous residual gases in the 
chamber and sampling system [25]. The purging time and speed was set higher (60 s with fast flow 
rate) to ensure the residual volatiles was adequately purged. The optimal purging duration can be 
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validated by comparing the sensor response during baseline recovery. Excessive and longer purging 
should be avoided as it can cause temperature and temporal drift [26–28].  

Upon obtaining the optimal setting, five sniffs were performed on each mango sample. Ten s were 
set as the baseline recovery (with medium flow rate); 50 s for sample draw (with medium flow rate);  
3 s intermediate pause between sniffing and purging; and 60 s to finally purge the residue of previous 
sample gases (with fast flow rate). The e-nose configuration setting is shown in Table 4. Medium flow 
rate (120 mL/min) for odour sampling that gives the optimal response was adopted for this 
experimental setup. This is similar to several published work [29–32] using low analytes flow rates 
setup especially when dealing with conducting polymer sensor. The right choice of flow rates enabled 
the correct identification and quantification of aromatic volatiles released from the fruits. The odour 
measurement was performed on the mango samples in a random order. All online  
e-nose measurement data was saved in txt file format via serial cable and later extracted using 
MATLAB software.  

Table 4. E-nose parameter setting for Harumanis mango. 

Cycle Time(s) Pump Speed 
Baseline Purge 10 120 mL/min 
Sample Draw 50 120 mL/min 
Idle Time 3 – 
Air Intake Purge 60 160 mL/min 

2.5.2. Acoustic Measurements 

For the acoustic assessments, the mango firmness index (FI) and alternative firmness index (AFI) 
were measured at four different locations, such as top, bottom, right side and left side of Harumanis 
mango. Each measurement was repeated three times and the average was obtained.  

2.6. Biochemical Measurements 

2.6.1. Brix and pH 

The mangoes were analysed for total soluble solids (TSS), °Brix and pH level using digital 
refractometer (Reichert-AR200, Depew, NY, USA) and pH-meter (TESTO 206-pH2, Sparta, NJ, 
USA) respectively. Both measurements were set with automatic temperature correction. Each pH and 
Brix measurement was repeated at least three times and the average was obtained. 

Each time after both the e-nose and acoustic measurements were taken, 14 mangoes randomly taken 
from the test samples were sliced from top to bottom. The juice from a mango was squeezed from the 
fruit and brix level was measured using refractometer. Similarly, the pH value was obtained using a 
testo-pH2 probe. Table 2 shows the number of samples that were used in this experiment. The 
destructive measurements of Brix and pH were used to validate and verify the two different groups of 
samples (green and mature) of three different dates by looking at the mangoes internal biochemical 
measurements. 
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2.6.2. Gas Chromatography Mass Spectrometry (GC-MS) 

For GC-MS analysis, Solid Phase Metal Extraction (SPME) needles made by CAR/PDMS 
(Supelco-57320-U, Bellefonte, PA, USA) was used to extract the headspace of the mango samples. 
Each sample was kept in an air-tight acrylic jar, purged with nitrogen and sealed (incubated) for at 
least 60 min. Subsequently, the SPME needle was exposed to the headspace of the mango for  
30 min. The SPME needle was then inserted into the GC-MS inlet port for the analysis. The initial 
oven temperature was set to 40 °C for 1 minute, ramped 10 °C/min to 200 °C and held for 5 min. 
Nitrogen was used as the carrier gas. Nine samples were used for this analysis: Week 8 day 2  
(3 samples), Week 8 day 4 (3 samples), and Week 8 day 7 (3 samples). The headspace compound was 
analysed using Perkin Elmer Clarus 600 Gas Chromatography (Clarus 600 T Mass Spectrometer; 
Turbomass Software 5.4.2, USA). The headspace compound identification was done by looking at the 
retention time and comparing with the known library standard. 

2.7. Pre-Processing of E-Nose and Acoustic Data 

Before the analysis, fractional measurement, Sfrac was applied to pre-process the raw e-nose data. 
This is often known as baseline manipulation. The baseline is subtracted and then divided by the 
sensor response. The result is a dimensionless and normalized Sfrac, where: 

Sfrac = [Smax – S0]/S0       (2) 

This baseline manipulation generates a unit response for each sensor array output with respect to the 
baseline, which compensates for sensors that have intrinsically large varying response levels. It can 
also further minimize the effects of temperature, humidity and temporal drifts. S0 (baseline reading) is 
the reading of the reference gas (nitrogen), while Smax is the maximum sensor readings when 
measuring the headspace of Harumanis samples. The sniffing cycle was repeated 5 times for each 
mango sample. After the above operation, the data Sfrac was further scaled to zero mean and one 
standard deviation. This is to ensure that all sensor responses were standardized and no particular 
sensor dominates the result. 

For the acoustic measurements, the average values of FI and AFI for each sample were obtained. 
These measurements were also scaled to zero mean and one standard deviation. Data from different 
modalities were processed separately and scaled before being fused together.  

An exploratory data analysis technique, in this case PCA, was identified as a suitable method to 
visualize patterns in the data. Each individual modality was projected separately by PCA. An adequate 
number of dimensions projected by PCA were determined based on principal components (PCs) that 
have achieved cumulative variance of 80% or more. Further trial to classify and validate the samples 
using a classification method was performed using LDA. While, LDA is a supervised pattern 
classification method and is based on the determination of linear discriminant functions of which  
inter-group variance is maximized and within-group variance is minimized. Cross-validation using 
leave-one-out method was performed using LDA and none of the training samples were used for the 
testing process. The PCA and LDA were computed using MATLAB 7.0 and SPSS 17.0, respectively. 
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2.8. Classification Using Artificial Neural Network (ANN) 

Generally, ANN is a powerful method that can be used to classify and predict unknown samples. 
ANN can be divided into supervised and unsupervised techniques. In most cases, supervised ANN 
such as Multilayer Perceptrons (MLP), Backpropagation (BP) and Radial Basis Function (RBF) are 
non-graphical and require higher processing power, while unsupervised ANN such as Hopfield 
Network (HNN), Competitive Learning (CLNN) and Self-Organizing Maps (SOM) produce a 
graphical representation and the computations are less complex [33–35]. Another advantage of 
unsupervised neural networks is that they are able to provide online classification. In this case, further 
validation and analysis to classify the six different classes from the LDA were performed using a 
hybrid graphical ANN known as LDA-CLNN [34]. The input vectors were taken from the first three 
components of the discriminant score of LDA output and fed through CLNN competitive layer.  
The size of input vector can be more than two vector matrices. The input and architecture layer for a 
LDA-CLNN is shown in Figure 3. The CLNN architecture is quite similar and related to Hamming 
network. The neurons in this competitive layer distribute themselves to recognize the behaviour of the 
input vectors taken from the discriminant score of LDA output.  

Figure 3. The architecture of LDA-CLNN [35].  

 

The parameter |Dist| in Figure 3 was formed by the distances between the input vector, p and input 
weight matrix, IW. The Dist matrix has positive elements [SxL] which are later added with biases, b 
to compute the net input n of a competitive layer. If all biases are zero, the maximum net input a 
neuron can have is ‘0’. This occurs when the input vector p equals the neuron's weight vector. The 
competitive transfer function CL, accepts a net input vector n1 for a layer and returns neuron outputs 
of ‘0’ for all neurons except for one neuron (the winner). The winner neuron is associated with the 
highest element of net input n1. 
  

LDA matrices  
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IV [R x L] 
|Dist| 
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Figure 4 shows how a competitive layer learns to classify seven input vector with 3 neurons. The 
seven input vectors illustrated in Figure 4(a) are as follows: 

p1 = 0.1980.974 , p2= 0.1960.981 , p3= 0.9880.214 , p4= 0.8240.512 , p5= 0.5240.812 , p6= 0.3510.875 ,p7 = 0.7250.652  

The competitive network is set up with three neurons, which represent the target number of sample 
classes. Thus, it can classify vectors into three classes only. The arrows in Figure 4(b) represent 
“randomly” chosen initial and normalized weights. The three random weights are shown as follows: 

 = 0.7070.707 ,   = 0.7070.707 ,   = 1.0000 , W = 

    

When p2 is presented to the CLNN network, the second neuron’s weight vector was the closest. So 
it won the competition and the output a 1. Then Kohonen learning rule was applied to the winning 
neuron with a learning rate of 0.5.  =  + 2 2 

 = 0.7070.707 +0.5 0.1960.981 0.7070.707  = 0.4510.844  

The Kohonen rule moves 2w closer to p2, as illustrated in Figure 4(c). As the input vector keeps on 
presenting to the network, then at each iteration, the weight vector that is closest to the input vector 
will move towards that vector. Eventually, each weight vector will point at a different cluster of input 
vectors. Each weight vector becomes a model for a different cluster. Once the network has learned to 
cluster the input vectors, it will classify new vectors accordingly as shown in Figure 4(d). 

Figure 4. Graphical representation of competitive layer learns to classify input vectors. 

 
 (a) (b) (c) (d) 
 
In summary, the competitive layer assigns each input vector p to one of those three classes by 

producing an output of 1 for the neuron whose weight vector is closest to p. 
The Bias learning rules in LDA-CLNN were adopted for the training of the network. Unlike other 

ANN, LDA-CLNN can be understood better when their weight vectors and input vectors are shown 
graphically. The training for both the e-nose measurement and the combined e-nose with acoustic (data 
fusion technique) was performed separately with 200 epochs and repeated three times. Since there are 
six different groups, the number of neurons is set to six to classify the input vectors into six different 
groups.  
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2.9. Data Fusion 

Low level fusion is performed by combining the information provided by different sensors  
of different modalities. There are many methods to perform this fusion i.e., using neural  
networks [36,37], template methods and cluster algorithms. In this experiment, PCA, LDA and  
LDA-CLNN were chosen to perform the low level fusion. The requirement for this method is that the 
sensors for both modalities must commensurate. 

PCA was used to analyze the behaviour or the grouping of the data. Further training, validation and 
classification between sample groups of the data fusion were performed using LDA. Cross-validation 
using leave-one-out method was carried out and variable selection was accomplished using Wilks’ 
lambda test. Fisher linear discriminant function was also applied in this analysis.  

Both the e-nose and acoustic data consists of 480 samples with 32 variables and two variables, 
respectively. Hence, the combined dataset from the e-nose and acoustic consists of 480 data samples 
with 34 variables. To ensure these datasets are standardized, the new dataset (after being combined) 
was scaled before performing the PCA, and LDA. 

3. Results and Discussion 

3.1. Biochemical Measurement Results 

After being harvested, 14 mango samples (seven mangoes taken each from week 7 and week 8) 
were sliced from top to bottom. The pH and brix measurement were obtained and repeated three times. 
The measurement was repeated on the second batch of samples and the summary of pH and brix levels 
is given in Table 5. Further measurements of pH and brix were carried out throughout day 2, 4 and 7 as 
shown in Table 5. The result shows that mangoes harvested early are less sweet and slightly sour 
compared to the mangoes harvested at week 8. The same results were reported by [38,39]. 

Table 5. (a) pH and Brix levels for four different maturity and ripeness levels of 
Harumanis; (b) Brix and pH for four different maturity and ripeness levels that were 
harvested on two different dates. 

(a) 

Harvest date a pH Brix 
Week 7 (Green) 3.18 17.10 
Week 8 (Mature) 4.22 17.39 

 
(b) 

Harvesting time b Day 2 c Day 4 c Day 7 c 
Brix pH Brix pH Brix pH 

Week 7 (Green) 18.9 4.93 20.3 5.37 21.6 5.54 
Week 8 (Mature) 20.6 4.93 21.3 5.99 24.4 6.22 

a Week after the mango is about 4 cm in diameter. 
b The mangoes were harvested at week 8 and week 7 after the size is about 4 cm 
and measured 2 days, 4 days and 7 days after. 
c The average readings of three repeated measurements.  
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Further work using GC-MS was also performed to investigate the volatile compounds emitted from 
the mangoes. This conventional method using SPME to extract the headspace of Harumanis mangoes 
for GC-MS analysis requires at least 60 min and an additional 30 min of SPME exposure time to the 
mango headspace. This lengthy process is required to obtain consistent and repeatable readings. 
Shorter exposure time of SPME to the headspace resulted in fewer peaks being observed in the 
chromatography plot. The GC-MS analysis result of 60 min incubation and 30 min SPME exposure 
time is shown in Figure 5. The variation of headspace volatile compounds was observed from an intact 
mango at three different maturity and ripeness levels i.e., mature, nearly ripe and ripe. The 
compositions of the 12 most prominent volatile compounds are shown in Table 6. The peak was 
compared and matched with the known NIST and Wiley mass spectra library. Each ‘peak search’ 
produces a “hit list” by the spectra library, which is ordered by similarity to the target spectrum 
according to a computed “match factor”. Ideally, the match factor should reflect the likelihood that the 
search peak and reference spectrum arose from the same compound. The distinct variation of 
headspace volatiles for the different ripeness levels strengthens the idea of using e-nose as a  
non-destructive tool to evaluate mango maturity and ripeness. 

Figure 5. Three different maturity and ripeness levels of Harumanis mango headspace 
extraction using SPME. 

 

Table 6. Volatile compounds emitted from ripe, nearly ripe and ripe Harumanis mangoes. 

Peak Retention Time Compound Name Mature Nearly Ripe Ripe Match 
1 2.083 Ethylene + + + 578 
2 6.627 α-Pinene + + + 864 
3 6.789 β-Pinene + + + 858 
4 9.014 Octanoic acid, octyl ester - + + 892 
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Table 6. Cont. 

Peak Retention Time Compound Name Mature Nearly Ripe Ripe Match 
5 10.342 Pentyl Octanoate - - + 749 
6 11.516 1-Dodecen-3-yne - + + 746 
7 11.593 4-Decenoic acid, ethyl ester, (Z)- - + + 840 
8 11.701 Decanoic acid, ethyl ester  + + 879 
9 12.867 Cedrene - + + 825 

10 13.044 
1,5-Cyclodecadiene, 1,5-dimethyl-

8-(1-methylethylidene)-,(E,E)- 
- - + 850 

11 14.070 Diethyl Phthalate + + + 798 
12 17.683 Hexadecanoic acid, methyl ester + + + 852 

3.2. FI and AFI Measurement Results 

All mango samples were kept in a room with constant temperature of 27(±1) °C and humidity of 
80% during the experimentation process. The FI and AFI were also measured from the control samples 
at two different harvesting dates (week 7 and week 8). Seven random samples were taken from the test 
samples for brix and pH measurements. The same method and experiments were repeated for the 
second batch of samples. Table 7 show both the firmness index and alternative firmness index, 
respectively. The FI in Table 7 shows mangoes that were harvested at week 7 were firmer compared to 
the mango samples that were harvested at week 8. However, after seven days, the measurement shows 
that the control samples harvested at week 7 shrivel faster than the control sample harvested at week 8. 
The ripening process or degrading (rotting process) started earlier in mangoes harvested during their 
premature stages [1,38,39].  

Table 7. FI and AFI for four different maturity and ripeness levels of Harumanis harvested 
on two different dates. 

Harvesting time a 
Day 2 b Day 4 b Day 7 b 

FI AFI FI AFI FI AFI 
Week 7 (Green) 27.71 63.48 7.213 40.64 6.463 38.21 
Week 8 (Mature) 22.25 60.44 8.975 49.04 8.751 47.73 

a The mango were harvested at week 8 and week 7 after the diameter is about 4 cm and measured  
2 days, 4 days and 7 days later. 
b The average readings of three repeated measurements.  

 
Figure 6 shows that there are strong correlations of FI and AFI after 2, 4 and 7 days of two different 

groups (green and mature) samples. However, the FI and AFI are less accurate without the prior 
information on the date of harvesting and duration of shelf life. Thus, another sensor modality such as 
e-nose can be coupled with FI and AFI to give better classification results.  
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Figure 6. (a) Firmness Index (FI) and (b) Alternative Firmness Index (AFI) plot of 
mangoes harvested at Week 7 (Green) and Week 8 (Mature) on three different days 

  
(a)        (b) 

3.3. E-Nose Measurement Results 

Prior to performing e-nose measurements, the optimal configuration parameters must be obtained. 
Several experiments were performed to determine the best possible experimental condition. Odour 
sensor chamber was set to 33(±1) °C to avoid temperature drifting or fluctuation that might affect the 
measurement. The acrylic jar was purge with dry nitrogen gas before starting to incubate the mango 
sample for 30 min. This procedure is important to avoid contamination from ambient air and humidity. 
This strict procedure is to ensure higher repeatability and reproducibility during the measurements.  

Figure 7. A complete cycle of six repeated measurements on mango sample taken at week 8. 

 
 

Figure 7 shows high consistencies between repeated measurements. The sensor has reached  
steady-state response when sniffing was performed for about 50 s. The performance may be better with 
longer sniffing time. However, there is a drawback when performing longer sniffing time. The 
headspace will be depleted faster and will result in huge variation on the 4th and 5th of repeated 
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measurement. Temperature and temporal drifts might affect the result as the measurement process will 
take longer than usual. It may also require longer purging time to ensure the previous residual volatile 
is totally removed from the conducting polymer sensor. 

The projected PCA in Figure 8(a–c) shows the fingerprint (‘smellprint’) of volatile assessment of  
40 mango samples [20 samples each from week 7 (Green) and week 8 (Mature)] for 15 s, 30 s and 50 s 
sample draw, respectively. Two distinct groupings with higher repeatability and reproducibility were 
observed in the PCA projection in Figure 8(c) while the inconsistent grouping was observed in  
Figure 8(a,b). The projected PCA in Figure 8(c) shows the sensor correlation (which is linearly 
separable) between two different maturity level that were harvested at week 7 and week 8. Thus, 50 s 
of sample draw is the optimum setup to differentiate mangoes harvested at week 7 and week 8. 

Figure 8. (a) PCA plot of 40 mango samples harvested at week 7 and week 8 with 15 s 
sniffing time. (b) PCA plot of 40 mango sample harvested at week 7 and week 8 with 30 s 
sniffing time. (c) PCA plot of 40 mango samples harvested at week 7 and week 8 with 50 s 
sniffing time. 

 
(a)        (b) 

 

 
(c) 
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The optimal configuration setup was implemented throughout the experiment for the e-nose 
measurement. The volatile compounds from the dynamic headspace of each mango (explained in 
Table 2) was measured and repeated three times. The measurements were performed on day 2, day 4 
and day 7 after harvesting. 

Figure 9. PCA plot of 32 mango sample (a) harvested at week 7 measured on day 2 and 
day 4, (b) harvested at week 7 measured on day 2 and day 7, (c) harvested at week 8 and 
measured on day 2 and day 4 and (d) harvested at week 8 and measured on day 2 and day 7. 

  
(a)       (b) 

  
(c)       (d) 

 
All mango samples that were harvested on week 7 and week 8 were labelled as Green and Mature, 

respectively. Figure 9(a) shows that there is no distinctive difference in aroma detected by the e-nose 
between Green day 2 and Green day 4. However, the distribution of Green day 4 data is spread and can 
be actually split further into two different groupings. For Green day 7, the volatiles emission starts to 
differ. Figure 9(b) shows that there is clear separation between Green after 2 days and after 7 days. 
This is due to the amount of volatiles released and the presence of aromatic gases such as 
monoterpenes, sesquiterpenes, esters and other volatiles gases as the mangoes are now moving toward 
in the ripening process as shown and explained in Figure 5 and Table 6. A similar result was also 
reported by Lalel [40]. 
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Interestingly, the volatile emissions from Mature day 2 and day 4 after harvest at week 8 show a 
quite distinct separation. During this period, between day 2 and day 4, the volatile gases are very 
distinguishable. At this time, there is a sharp rise in the amount of ethylene released by the mangoes [5]. 
However, in Figure 9(c), the separation between Mature day 2 and day 4 of the mature sample is more 
or less similar to the result in the Figure 9(d). The same result was observed as the mango starts 
ripening; most of the volatiles and aromatic gases released from the fruit begin to saturate [40].  

Unfortunately, when a classification model was implemented which consist of volatiles from mango 
samples at day 2, day 4 and day 7 that were harvested at week 7 and week 8; the PCA model was 
unable to discriminate the six different groupings. Only two different groupings were observed in 
Figure 10 and all 32 sensors were used in this model. Further validation and classification were 
performed using LDA. Similarly, the LDA plot observed in Figure 11 is unable to classify six different 
groups. The LDA can only discriminate four groupings instead of six different groups.  

It can be observed that e-nose can further classify mangoes of day 2, 4 and 7 that were harvested at 
week 7 (green) compared to those samples that were harvested in week 8 (mature). E-nose is still 
unable provide better classification on mangoes samples that were harvested at week 8 although they 
are releasing distinctive aromatic volatiles between day 2, 4 and 7 as shown in Figure 5. The masking 
effects and synergism between different aromatic volatile compounds is observed in Figure 11 when 
mango samples (harvested at week 8) emits several distinctive aromatic volatiles but still grouped 
under one cluster. Similar finding was published by Hallier [41] on odour characterization of cooked 
Silurus glanis. This shows that e-nose system alone is insufficient to provide accurate classification 
compared to GC-MS system. This finding lead toward the fusion of e-nose and acoustic system to 
form a multi modalities sensing technique that holistically mimic the way human panel assess the fruit 
maturity and ripeness level.  

Figure 10. PCA for three different maturity and ripeness level of Harumanis harvested at 
two different dates Green (week 7) and Mature (week 8). 
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Figure 11. LDA plot of 32 e-nose sensors responses for three different maturity and 
ripeness level of Harumanis harvest at two different date (week 7 and week 8). 

 

3.4. Fusion of E-Nose and Acoustic Sensor  

The limitation of PCA and LDA to produce a classification model of maturity and ripening level 
using e-nose measurement alone justifies the idea of introducing a fusion technique. The low level 
fusion technique was implemented using PCA and LDA. The PCA shows a slightly better grouping 
and separation as compared to the previous. The PCA plot of fused e-nose and acoustic measurement 
is shown in Figure 12. However, the result of this fusion method using PCA is still not satisfactory.  

Figure 12. PCA plot using data fusion technique for three different maturity and ripeness 
level of Harumanis harvest at two different date (week 7 and week 8). 

 
 



Sensors 2012, 12 
 

 

6041

On the other hand, LDA shows a better performance. The LDA plot of data fusion technique in 
Figure 13 clearly shows the separation of six different groupings. The LDA model was tested and 
100.0% of original grouped cases correctly classified and 98.8% of cross-validated grouped cases 
correctly classified. The classification result is shown in Table 8. The LDA was expected to give better 
classification. This is because PCA is one of the unsupervised exploratory data analysis techniques that 
convert a set of observations of correlated features into a set of values of uncorrelated variables that 
give meaningful graphical representation or the abstraction of the data. It is often used to reveal the 
behaviour of the data in a way which best explains the variance in the data. LDA, on the other hand, is 
a supervised pattern classification where the main objective is to maximize class discrimination and 
minimized within group variance. The objective of PCA is to squeeze variance into as few components 
as possible.  

Figure 13. LDA plot using data fusion technique for three different maturity and ripeness 
level of Harumanis harvest at two different date (week 7 and week 8). 

 

Table 8. Classification results a,b on the fused e-nose and acoustic sensor using LDA for 
three different maturity and ripeness levels of Harumanis harvested on two different dates 
(week 7 and week 8). 

  

Group 

Predicted Group Membership 

Total   1.00 2.00 3.00 4.00 5.00 6.00 

Original Count 

1.00 80 0 0 0 0 0 80 

2.00 0 80 0 0 0 0 80 

3.00 0 0 80 0 0 0 80 

4.00 0 0 0 80 0 0 80 

5.00 0 0 0 0 80 0 80 

6.00 0 0 0 0 0 80 80 
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Table 8. Cont. 

 % 

Group 

Predicted Group Membership 

1.00 2.00 3.00 4.00 5.00 6.00 Total 

1.00 100.0 0.0 0.0 0.0 0.0 0.0 100.0 

2.00 0.0 100.0 0.0 0.0 0.0 0.0 100.0 

3.00 0.0 0.0 100.0 0.0 0.0 0.0 100.0 

4.00 0.0 0.0 0.0 100.0 0.0 0.0 100.0 

5.00 0.0 0.0 0.0 0.0 100.0 0.0 100.0 

6.00 0.0 0.0 0.0 0.0 0.0 100.0 100.0 

Cross-validated 

Count 

1.00 79 0 1 0 0 0 80 

2.00 0 80 0 0 0 0 80 

3.00 0 0 80 0 0 0 80 

4.00 0 0 0 80 0 0 80 

5.00 0 0 0 0 80 0 80 

6.00 0 0 0 0 0 80 80 

% 

1.00 98.8 0.0 1.3 0.0 0.0 0.0 100.0 

2.00 0.0 100.0 0.0 0.0 0.0 0.0 100.0 

3.00 0.0 0.0 100.0 0.0 0.0 0.0 100.0 

4.00 0.0 0.0 0.0 100.0 0.0 0.0 100.0 

5.00 0.0 0.0 0.0 0.0 100.0 0.0 100.0 

6.00 0.0 0.0 0.0 0.0 0.0 100.0 100.0 
 a 100.0% of original grouped cases correctly classified. 
 b 99.8% of cross-validated grouped cases correctly classified. 

 
Further improvement toward this model can be made by selecting the more effective sensors. The 

sensor selection was performed using Wilks’ lamda test shown in Table 9. Sensors 14 and 17 from the 
e-nose were found to be insignificant and can be dropped from the model. 

Table 9. Wilks’ Lambda test for sensor selections. 

Modalitiy Sensor Label Wilks’ Lambda F 

E-NOSE 

SENSOR 01 0.334 189.264 
SENSOR 02 0.465 109.242 
SENSOR 03 0.026 3,559.567 
SENSOR 04 0.064 1,384.462 
SENSOR 05 0.438 121.805 
SENSOR 06 0.036 2,549.234 
SENSOR 07 0.069 1,285.085 
SENSOR 08 0.214 348.496 
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Table 9. Cont.  

Modalitiy Sensor Label Wilks’ Lambda F 

 

SENSOR 09 0.061 1,466.481 
SENSOR 10 0.066 1,333.454 
SENSOR 11 0.049 1,839.524 
SENSOR 12 0.174 448.954 
SENSOR 13 0.023 4,110.666 
SENSOR 14 0.739 33.483 
SENSOR 15 0.132 621.108 
SENSOR 16 0.307 214.050 
SENSOR 17 0.657 49.464 
SENSOR 18 0.309 212.426 
SENSOR 19 0.071 1,240.156 
SENSOR 20 0.007 13,299.374 
SENSOR 21 0.249 285.176 
SENSOR 22 0.128 645.636 
SENSOR 23 0.409 137.186 
SENSOR 24 0.073 1,201.120 
SENSOR 25 0.032 2,869.053 
SENSOR 26 0.048 1,896.044 
SENSOR 27 0.246 289.864 
SENSOR 28 0.348 177.933 
SENSOR 29 0.340 183.761 
SENSOR 30 0.025 3,694.859 
SENSOR 31 0.080 1,095.785 
SENSOR 32 0.168 468.469 

ACOUSTIC SENSOR 33 0.043 2,091.618 

 SENSOR 34 0.066 1,335.055 

3.5. ANN Results 

Further validation and classification of Harumanis maturity and ripeness level was performed using 
LDA-CLNN. During training, each neuron in the layer closest to a group of input vectors adjusts its 
weight vector towards those input vectors. Eventually, if there are enough neurons, every cluster of 
similar input vectors has a neuron that outputs “1” when a vector in the cluster is presented, while 
outputting a “0” at all other times. Thus, the competitive network learns to categorize the input. 

The diagram in Figure 14 shows 480 three-element LDA input vectors represented with “+” 
markers. The competitive layer is set to have six neurons to classify the input vectors into six different 
groups as shown in Figure 14(a,b). These three-element input vectors (from LDA output) are adequate 
enough for the LDA-CLNN classifier to perform the prediction with 84.4% prediction accuracy. Vast 
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improvement can be seen when the classifier is trained with the fused data rather than using only the  
e-nose data. The prediction accuracy was improved from 66.7% to 84.4% as shown in Table 10. Six 
different groups were successfully classified when the fused data was used compared to e-nose data 
where only four grouping were classified. 

Figure 14. The graphical representation of LDA-CLNN with (a) 6 neurons of e-nose data 
(b) 6 neurons of fused e-nose and acoustic data on six different maturity and ripeness level.  

  
(a)       (b) 

Table 10. ANN classification results using LDA-CLNN. 

Method 
Number of samples Number of clusters detected 

% Correct Classification Training and Cross 
Validation Testing 

E-nose 120 (25%) * 360 (75%) 4 66.7% 
E-nose and acoustic 120 (25%) * 360 (75%) 6 84.4% 

* None of the training and cross validation samples were used in the testing. 

4. Conclusions 

The GC-MS and e-nose results have shown that mango samples from two different harvesting times 
at Green (week 7) and Mature (week 8) produced very distinct aromatic smells and volatile gases. The 
firmness was also distinct between Green and Mature sample. For such cases, the PCA and LDA were 
adequate enough to discriminate and classify the samples according to different harvesting time. 
Similar results were also observed from FI and AFI. 

However, when a classification model was performed based on e-nose data of six different groups, 
PCA and LDA were unable to separate the samples from week 7 and week 8 after 2, 4 and 7 days. 
Using PCA, the e-nose was able to discriminate only two out of six different groups. While for the 
LDA model, only four different groups were observed.  

Furthermore, the use of FI and AFI solely to discriminate maturity and ripeness level of mangoes of 
unknown harvesting date are not very effective. A more precise time of harvest must be obtained for FI 
and AFI to work efficiently. Unfortunately, the exact date for harvesting is hard to achieve based on 
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the physical parameters such as counting the age of the fruit from the day the flowers set, firmness or 
the skin colour.  

By applying low level data fusion technique, the discrimination and classification of maturity and 
ripeness level using LDA was greatly improved. However, low level fusion using PCA was not 
satisfactory. The use of a low-level data fusion technique with the LDA for the e-nose and acoustic has 
enabled the six different groups of Harumanis mangoes to be grouped separately. These six groupings 
could also be associated with human preferences as it conveys the internal biochemistry and external 
parameter of mango characteristic. Moreover, this fusion technique has also improved the confidence 
level and discrimination performance by reducing uncertainties and allowing the e-nose and acoustic 
sensor to complement each other. Thus, this technique can extend the ability of e-nose and acoustic 
when fused together to evaluate and classify the maturity and ripening stages of the mango samples. 

This investigation has proven that different sensor modalities can provide different and 
complementary information and hence by combining the modalities, the classification performance can 
be enhanced. This approach has enabled the evaluation and extraction of more information out of 
mango samples which have high similarities between them.  

In summary, by applying data fusion, the combined e-nose and acoustic responses essentially 
mimicsed the human preference as both interact and complement each other. Hence, this fusion 
method has strong potential to assist human panels in making decisions, for applications such as fruit 
quality assessments. More modalities can be added in the near future such as NIR spectroscopy or IR 
vision to provide additional parameters for a more robust quality assessment of Harumanis mangoes.  
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