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Abstract: Magnetic Induction Tomography (MIT), which is also known as Electromagnetic 

Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of 

interest to many researchers around the world. This noninvasive modality applies an 

electromagnetic field and is sensitive to all three passive electromagnetic properties of a 

material that are conductivity, permittivity and permeability. MIT is categorized under the 

passive imaging family with an electrodeless technique through the use of excitation coils to 

induce an electromagnetic field in the material, which is then measured at the receiving side 

by sensors. The aim of this review is to discuss the challenges of the MIT technique and 

summarize the recent advancements in the transmitters and sensors, with a focus on 

applications in biological tissue imaging. It is hoped that this review will provide  

some valuable information on the MIT for those who have interest in this modality. The need 
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of this knowledge may speed up the process of adopted of MIT as a medical imaging 

technology. 

Keywords: tomography; biological tissue; magnetic induction tomography; transmitter; 

sensor 

 

1. Introduction 

Magnetic Induction Tomography (MIT) which is also known by the name of Mutual Inductance 

Tomography or Electromagnetic Tomography (EMT) is among the technologies ventured in the early 

90s with first report appearing in 1992–1993 [1]. Like other modalities, the research has involved both 

the process industry [2–8] and biomedical tissue imaging, which this article is going to focus on. The 

MIT modality is categorized as a passive imaging modality together with Electrical Impedance 

Tomography (EIT) [9–13], Electrical Capacitance Tomography (ECT) [14,15] and Magnetostatic 

Permeability Tomography (MPT) [16–18]. All these modalities are sensitive to all three passive 

electromagnetic properties which are conductivity, permittivity and permeability of the material where 

in this article the interest is on biological tissues.  

Several studies based on magnetic induction applications to biological tissues had been reported in 

1968 by Tarjan and McFee [19] followed by Netz et al. [20] and Al-Zeibak and Saunders [21]. Their 

works have been continued by the new researchers who made MIT of interest to many researchers 

around the World with the new innovations and discoveries. Among the applications involved are lung 

monitoring and imaging [20,21], brain imaging and stroke related problem [20,22–28], liver tissue 

monitoring [29–31]physiological measurement [27] and several others not listed here. 

Through contributions by Gabriel et al. [32] who had mapped out the range of suitable frequencies 

for biological tissues based on the experiments done by previous researchers, the interest in MIT 

research had gained some positive sides. One motivation for researchers who are involved in these 

passive electrical properties is their characteristic dependence on the state of hydration of biological 

tissue [23,25,29,31,32]. This provides an opportunity and alternative in studying the human body 

based on passive imaging modalities.  

The aim of this review is to discuss the challenges of the MIT modality and summarize the recent 

advancements in transmitters and sensors, with a focus on applications in biological tissue imaging. It 

is hoped this review will provide some valuable information about the fundamental and current 

progress of MIT hardware (sensors, transmitters and electronic parts) for the researchers and those 

interested in this modality. The need of this knowledge may speed up the process of MIT of being 

among the adopted technologies in medical imaging. 

2. MIT Theoretical Concepts 

MIT is a low resolution imaging modality which aims at reconstruction of electrical conductivity, 

permittivity and permeability in the object [1,8,17,23,33], which is similar to the more established 

technique of Electrical Impedance Tomography (EIT) [9,10,34–36]. In biological tissues, the conductivity 
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component is always dominant compared to permittivity and permeability [1,37–39] as the permittivity 

term for biological tissues is much smaller than the conductivity, especially at frequencies within the 

β-dispersion range (10 kHz–10 MHz) [40]. In term of devices used, MIT is different from EIT since it 

does not require galvanic coupling between the device and the object, hence avoiding the ill defined 

electrode-skin interface [25,29,37–39]. MIT instruments consist of several components which are 

sensors (excitation coils, detection coils, and screen), interface electronics and host computer [3] as 

shown in Figure 1. This contactless technique applies the interaction concept of an oscillating primary, 

B0 generated by excitation coil with the conductive medium (object under investigation). This 

interaction is accompanied by the induction of eddy currents in the medium itself as the primary field 

propagates and penetrates the medium. The field due to these eddy currents is known as the secondary 

field, ∆B and also known with the name of magnetic perturbations field [1,19,39,41–44]. All these 

fields are sensed by the sensors at the receiver side. The concept of MIT is shown in Figure 2.  

Figure 1. Block diagram of a typical MIT system illustrated by Binns et al. [3]. 

 

Figure 2. Principle of a MIT system illustrated by Gursoy et al. [45]. 

 

In term of signal view, this can be explained through the phasor diagram shown in Figure 3. At the 

receiver, the total received signal is V0 + ΔV, where V0 is the signal induced direct from the primary 

field, B0 at the primary coil, while ΔV is the signal derived from eddy currents field (secondary field, 

ΔB) induced within the investigated object and the phase angle is   . The skin depth,   of 

electromagnetic field in the material (strictly for a plane wave) is given by: 

   
 

  
 
 
 
 
 

 
 

 (1)  

where  is angular frequency;    is permeability of free space;    is relative permeability of the 

sample and   is the conductivity of the sample [39,46]. In biological tissues, skin depth is always large 

compared to the thickness of the sample, hence the secondary field is nearly 90

 phase shifted with 
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respect to the primary field [1]. In relation to that, the ΔV signal which carries the information on the 

electrical properties of the material [where the        and        components represent permittivity 

and conductivity of the object, respectively) is essential for the solution of the inverse problem and will 

be considered in the image reconstruction [42,43]. 

Figure 3. Phasor diagram of the MIT received signal [1]. 

 

The carried information is on the changes of k, the complex conductivity distribution of the medium 

which is given by:  

k =  + j (2)  

Changes Δk will change the value of ΔB, hence this change will automatically affect the value  

of ΔV [49]. For a biological tissue equivalent sample (assuming µr = 1,  >> ) the secondary signal 

ΔV will be proportional to the frequency and sample conductivity [25,27,43].  

3. Challenges in MIT 

A great challenge in an MIT system for imaging biological tissue is that the primary field B0 is 

much larger than the secondary field, with a ΔB of the order of 10
2
–10

6
 times greater, depending on 

the frequency of operation and coil geometry [35]. This phenomenon is due to the relatively low 

conductivity of the tissue [35,45]. Griffiths [46] had noticed that the expected perturbation of the 

received signal due to conduction of eddy currents within biological tissues, which is 1% of the 

primary signal, was still small, even with the use of high frequency (HF) excitation fields (10 MHz). 

Through single channel measurement, Watson et al. [48] had reported that the practical benchmark for 

biomedical MIT was to be able to resolve 1% variations in the field perturbations in the biological 

tissues whereas for tissues with conductivities in the biological range of 0.1 S/m–2 S/m, the maximum 

phase shift expected was of the order of 1° at 10 MHz.  

Moreover, the primary field existing at the receiver has introduced noise into the signal 

measurements [47–50]. The noise can be in two forms that were by restricting the gain which may be 

applied to the received signal and thereby increasing the contribution of quantization errors, and 

secondly by introducing phase noise and drift errors in the in-quadrature signal [51]. The errors may be 

obvious with the existence of unwanted electric-field (capacitive) coupling between the excitation coils 

and the sensors. Even though this coupling does not contribute to noise, it may cause a systematic  

error that remains constant in the MIT measurements [52]. These phenomena become worse for low 

conductivity materials such as biological tissues [39,51,52]. On the other hand, noise may also appear 

from the thermal motion of free electrons in the measuring apparatus [7,46,53–55]. Due to that, 

corrective action needs to be considered during experiments for minimizing or eliminating these 

sources of errors.  
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4. Techniques to Overcome 

Several steps and techniques have been taken by researchers to overcome this challenge in 

minimizing these major issues on the receiver signals. Among the methods that have been introduced 

were gradiometer (axial & planar), electromagnetic screen (shielding), magnetic-confinement screen, 

coil orientation, enhancement in electronic circuit and also through the use of multi-frequency 

techniques. 

4.1. Gradiometer 

A gradiometer is an instrument that is used in measuring the gradient (numerical rate of change) of a 

physical quantity, such as a magnetic field. It is used in the elimination of influence from ambient fields 

which exist in the measurement. In the MIT case, through the use of a gradiometer, most of the primary 

signal is cancelled in the sensor itself. The advantage of gradiometer is that the sensor can remove most 

of the primary signals effects which contain phase noise, thus it gives a high primary signal that affects 

the cancellation factor [1], besides being mechanically very stable. There are three types of gradiometers; 

axial, planar and asymmetrical. However only axial and planar gradiometers are discussed in this article 

since the asymmetrical gradiometer is not so popular in the MIT application [56].  

4.1.1. Axial Gradiometer 

Tarjan and McFee [19], Netz et al. [20] and Scharfetter et al. [57] had implemented this symmetry 

method in cancelling the primary field. Through this technique two coils were located at equal distances 

at any axis of symmetry with the primary coil at the middle. Karbeyaz and Gencer [58] in their research 

had implemented a single coaxial gradiometer which can moved over the phantom using an XY scanning 

system. In a more proper design, Riedel et al. [59] had studied the precision and sensitivity of an axial 

gradiometer consisting of five PCBs. In avoiding capacitive coupling, these PCBs were covered with 

shielding layers on top and bottom, followed by measurement coils, with the excitation coil located in  

the middle as in Figure 4(a). In this study, two types of shielding; circular type and star type (see  

Figure 4(b,c)) were compared through measurement. The purpose of radial shielding was to avoid 

circular eddy currents from disturbing the measurement. The study had shown a linear variation in both 

types of shielding with the sensitivity of 0.003 mV∙S
−1
∙m at 600 Hz. However noise and drift were in the 

same range at lower current value (154 mA) for imaginary and real in both shielding types. 2 × 2 planar 

matrix arrangements proved that distance between adjacent sensors provided significant sensitivity, 

however major improvements were still required in noise and drift. 

Xu et al. [60] had implemented in their multichannel hemispherical glass bowl measurement 

systems what Riedel and his group had done before, but with several modifications to the circuit. They 

had employed an independent single cancellation sensor in improving the system’s stability and 

decreased the phase drift caused by the ambient temperature variation and other influences. They had 

also included difference amplifier with high CMRR for capacitive coupling rejection, whereas shielded 

cables had been proposed in avoiding some unwanted signals to couple into the signal channels. 

http://en.wikipedia.org/wiki/Gradient
http://en.wikipedia.org/wiki/Physical_quantity
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Figure 4. An axial gradiometer developed by Riedel et al. [59]. (a) The measurement 

system with arrangement of shielding; (b) Shielding with circle type; (c) Shielding with 

star type.  

 

(a) 

 

(b) (c) 

4.1.2. Planar Gradiometer 

Ketchen et al. [61] had demonstrated the first thin-film planar gradiometers consisting of parallel 

and series configured pickup loops directly coupled to the superconductivity quantum interference 

device (SQUID) inductance. The development of efficient planar coupling schemes for dc SQUIDs in 

1981 led to the development of improved thin-film planar gradiometers with an intrinsic balance of 

better than 1 part in 10,000 and a projected factor of 100 improvement of the magnetic field gradient 

noise sensitivity. Poor intrinsic balance causing them to remain significantly sensitive to the fields they 

had been design to reject. 

With several enhancements Stolz et al. [62] introduced a planar gradiometer design with long 4-cm 

baseline consisting of two series-configured pickup loops transformers coupled to a thin-film SQUID 

with magnetic field gradient noise ranged from 0.36 to 0.72 fT/cm-Hz½ and intrinsic balance in the 

range from 10
−4

 to 10
−3

.  

Cantor et al. [63] had developed a thin-film planar dc SQUID gradiometer shown in Figure 5 where 

the design was the same as developed by Stolz, but with a featured contact pad placement at the ends 

of the chip rather than in the middle. The gradiometer featured smooth dc characteristics, low noise 

performance and can be operated without shielding in typical laboratory environments without losing 

lock. This type of gradiometer was attractive for biomedical imaging and other applications requiring 

low-noise measurements in noisy environments. 
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Figure 5. Thin film planar gradiometer developed by Cantor et al. [63]. 

 

Scharfetter et al. [27] had introduced an adjusted planar gradiometer (PGRAD) with planar 

geometry (See Figure 6). The design exhibited an anti-symmetric sensitivity with respect to left-right 

transverse axis (axial symmetry), and thus was sensitive to the location of perturbation in the z-axis 

whereas it was insensitive to the object in the x-y plane.  

Figure 6. COIL-PGRAD system developed by Scharfetter et al. [27]. 

 

This single channel measurement in combination with a high resolution phase detector had 

compared the performance of PGRAD with coil as a sensor in term of signal to noise ratio (SNR) and 

signal to carrier ratio (SCR). The receiver coil was arranged in the same position as the excitation, 

where primary signal was subtracted from the captured signal using the value measured by reference 

coil. SNR is given by 
  

  
 whereas SCR is 

  

  
 [40],    is voltage noise in the amplifier. They had 

reported that planar gradiometer has an improved SNR value of 34.1 dB compared to only 12.9 dB if a 

coil were used, which was 164.3% better. This showed that through the fabrication of gradiometers in 

PGRAD on the same PCB board, their intrinsic balance was improved since the process was estimated 

to be accurate to a certain degree of accuracy. This high intrinsic balance had given PGRAD more 

capability in reducing the noise compared to coils through minimizing the primary field. This was also 

reflected in the signal to carrier ratio (SCR) which has increased about 20 dB if using PGRAD due to 

the significant reduction of V0. Quite low SNR and SCR of receiver coil may be related to the 
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imperfect subtraction of the primary field at the receiver coil itself due to the manually adjusted  

back-off coil in the absence of an object.  

Using the same setup as in Figure 6, Rosell et al. [40] had evaluated analytically and experimentally 

the performance of a planar gradiometer as a sensing element in an MIT system with both sensors 

(receivers) fabricated on PCB. They had identified the major advantage of a planar gradiometer 

compared to a coil was the bigger measured phase shift produced by the perturbation while the major 

problem was that it was insensitive to objects with axial symmetry due to its anti symmetrical response. 

In comparison to coils, planar gradiometers provided a robust and stable cancellation technique, capable 

of reducing the carrier signal in the absence of conductivity perturbations while maintaining essentially 

the same absolute sensitivity for local perturbations. This produced a bigger relative sensitivity of the 

gradiometer when compared to a coil. Results showed that a system using a planar gradiometer as 

detector has less demanding requirements for the electronic system than a system using simple coils. In 

addition, a preliminary study of the sensitivity matrix for an imaging system with 16 gradiometers 

showed a decrease in the matrix rank compared to a system with 16 coils.  

Still with the same single measurement setup as in Figure 6 but only using PGRAD as receiver, 

Scharfetter et al. [31] had done experiments which aimed at two objectives; brain edema monitoring 

and estimation of hepatic iron stores in certain pathologies. Four important error sources had been 

studied that were moving conductors near the PGRAD, thermal drifts of the PGRAD-parameters, 

lateral displacements of the PGRAD and phase drift in the receiver. They had noticed that all errors 

affected the detected  eal pa t  mainly  elated to ε and µ) of the measured complex field was more than 

the imagina y pa t  mainly  elated to   , which was up to 62 times an SCR for aluminum sphere 

moving case. Thermal mismatches of 0.15 K at 150 kHz between both gradiometer halves introduced 

Im(
  

  
) of 10

−7
 whereas for Re(

  

  
) the value was 50 times larger. In term of small lateral displacements 

of receiver, for 10 µm displacement can caused Re(
  

  
) by a factor of more than 1000 compare to 

Im(
  

  
) which was not more than 10

−7
. 

Figure 7. New single channel MIT system developed by Scharfetter et al. [64] for 

comparing the performance of PGRAD and solenoid coil as receiver. 

 

Again, in comparing the effectiveness of PGRAD and solenoid coil as a receiver, Scharfetter et al. [64] 

developed another single channel MIT system shown in Figure 7. In difference to the earlier setup in 
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Figure 6, the receiver coil was arranged with its axis perpendicular to the excitation coil in such a way 

that the receiver was insensitive to the primary signal, thus the measured signal at the receiver was 

only due to the presence of an object. They had reported the advantages of PGRAD which much less 

sensitive to far sources of electromagnetic interference thus suitable for an open system without screen. 

The drawback was it had problems with phase errors due to thermal mismatches between two 

gradiometers halves. However for coils, besides its simpler design which can be fabricated and 

calibrated easily, the advantages came when the system was shielded against RF sources, since coils 

had worse immunity to electromagnetic interferences. 

In a more advanced version of the previous design, Scharfetter et al. [65] had developed a multi 

channel MIT imaging system with the introduction of new gradiometer known as zero flow 

gradiometer (ZFGRAD), seen in Figure 8. ZFGRAD which combined the advantages of PGRAD and 

zero flow coil (ZFC) where ZFC was also known as Bx sensor [51]. PGRAD had the capability of 

cancelling the interferences from far RF to a high degree through differential design of both halves, 

whereas ZFC can easily be positioned in a perpendicular orientation with respect to the excitation coil 

in such a manner that it has zero net primary magnetic flow in it. ZFGRAD was proven to have better 

immunity to far magnetic perturbations compared to PGRAD and ZFC (relatively up to 2 and 12 times 

better). In terms of sensitivity it was the worst among the three, however the morphology of the 

sensitivity maps for the three types were very similar, where ZFC and ZFGRAD exhibit their 

maximum sensitivities near the tank borders on the side of the excitation coil whereas the PGRAD was 

more sensitive near the receiver side. The slight differences in the sensitivity maps are only due to the 

different geometries. In addition, for a multi channel MIT, it was hard to adjust all gradiometers to be 

nulled to the primary signals for all excitation coils, thus there were still residual signals that exist 

which in turn contributed to noise in the measurements. Like receiver coils, whereby even small errors 

in the perpendicular positioned angle of the coils provided opportunity for primary signals to penetrate 

the coil hence contributed additional value to the true measured secondary signals. In this case, 

normalization for measurement at every excitation cycle is vital in reducing the errors due to this 

imperfect position of the sensors. 

Figure 8. ZFGRAD system developed by Scharfetter et al. [65]. 
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In different view, Merwa et al. [66] had simulated a model consisting of 16 excitation coils and 32 

receiver coils which could be combined pairwise to give 16 planar gradiometers as illustrated in Figure 9. 

The simulation compared the performance of 32 receiver coils with 16 planar gradiometers. 

Reconstructed images using 32 receiver coils showed a good localization of the perturbed sphere but all 

perturbations are slightly displaced towards the nearest border of the cylinder. In contrast, 16 planar 

gradiometers (combination of two parallel coils) produced a better localization; however there were two 

places in which ghost images with opposite sign mirrored the true image with respect to the x-y plane. 

Figure 9. System modeled by Merwa et al. [66]. 

 

This was due to symmetry of the coil itself which is unable to distinguish between a positive 

conductivity on the upper half region and the negative conductivity on the lower half if the same 

corresponding conductivity detected, since the induced v in both coils was always the same. This 

effect can be eliminated by placing two parallel rings of planar gradiometers around the cylinder which 

was either one ring should be rotated to some angle relative the other one, in order to achieve a lower 

degree of symmetry [65] as in Figure 10. On the software side, Merwa and Scharfetter [34,35] proved 

that Point Spread Function (PSF) had the capability of solving this ‘location un ecognized’ issue, since 

PSF which defined the propagation in an image due to a point source or point object depend on the 

location and geometry of the perturbation. 

Figure 10. Two rings system proposed by Scharfetter et al. [65] to overcome the  

‘ghost image’ issue which is due to symmetry of the receiver coils. 
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4.2. Electromagnetic Screen 

The application of electromagnetic screens in the MIT hardware system may overcome the existing 

capacitive coupling between excitation coils and receiver coils [67] which generates noise in the 

measured signals, while a magnetic confinement screen helped in improving the sensitivity of the system. 

There are several types of electromagnetic screens: outer screen, inner screen and electro-magnetic 

capsule [7,39,48,68–72]. 

Peyton et al. [68] and Yu et al. [73] had introduced two types of screen which they called outer 

electrical screen and magnetic confinement shield in their system (see Figure 11). The magnetic 

confinement shield constructed from a ferrite powder/polypropylene composite material, concentrated 

the field inside the image space and prevented interference from external sources. They also had 

located the electronic circuit in a capsule to provide more shielding to the circuit.  

Igney et al. [71] did include in their experiment on a planar-array MIT system, an electric field 

shield constructed from a copper strip board placed on top of each excitation coil. The electric-field 

shielding employed therefore reduced the electric-field coupling by a factor of approximately 4. The 

results suggested that significant electric-field coupling still remained, even with the application of 

electric field shielding. 

Figure 11. Two types of screen used by Peyton et al. [68]. 

 

Griffifths et al. [39] had enclosed their MIT system within an aluminum electromagnetic screen 

with the coils themselves screened individually (see Figure 12). The coils were mounted on Perspex 

formers inside the electromagnetic screen with two gaps left in the screen to prevent eddy currents 

circulating in it. The electromagnetic screen was proven to reduce the relative permittivity of water 

from 87 ± 6 (without screen) to 81 ± 6 (with screen) which indicated the effectiveness of the outer 

electromagnetic screen in eliminating capacitive coupling by ‘att acting’ the electric field.  

Figure 12. Electromagnetic screen implemented by Griffifths et al. [39]. (a) Plan view;  

(b) Cross section view and pictorial view. 

  

(a)         (b) 
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In a different design for the purpose of cerebral haemorrhage imaging, Griffifths et al. [70] had 

implemented an aluminum hemisphere screen in their frequency-difference helmet array system (see 

Figure 13) where the helmet inner size conformed closely the shape of a normal adult’s head. The 

standoff distance for the screen was of 60–80% of the coil diameter which provided reasonable 

suppression of inter-coil capacitive coupling without excessively damping the inductive signals. 

Compared to a conventional cylindrical array, this hemispherical design which consisted of arrays 

could increase the inductive coupling to the brain and hence the sensitivity to conductivity changes 

within it. By locating the coils as close as possible to the scalp, the MIT signals would be maximized. 

This was more obvious with the increasing of the number of excitation coils however the drawback 

was also the increase of the capacitive coupling effects. From simulation they proved that the screen 

was effective in rejecting interference and minimizing inter-coil capacitive coupling where the results 

showed through the implementation of electromagnetic screen on 46 coils, the visualization of the stroke 

region was more visible compared to the unscreened system, even with increasing receiver numbers. 

Figure 13. Semi hemisphere screen of Cardiff MK2b head array implemented by  

Griffifths et al. [70]. (a) Final dimension of helmet; (b) Helmet prior to adding the 

electronics; (c) reconstructed images based on simulated data on different number of coils 

and with electromagnetic screen. 

 

 

(c) 
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Yin et al. [69] did mentioned that in high frequency and low conductivity applications, the design 

of the outer screen needs to take into account the design parameters of the screen (thickness, distance 

to coil, materials) in improving the performance of the sensor system. From their analysis based on 

Figure 14, they had reported that in avoiding significant reduction, it had to be at least three times the 

diameter away from the coil. The thickness of the screen also played an important role as if it was 

much less than the skin depth, the screen still has a significant effect on the sensitivity maps. At low 

frequency, thick screens allowed EM fields to penetrate the material due to skin depth effects, which in 

turn produced eddy current fields which opposed the primary field, thus reducing the net EM field near 

the screen. A very thin screen (thickness less than skin depth) would not let the EM field penetrate into 

the screen, hence it induced an eddy current field at the surface of the screen which acted as a barrier to 

the internal and also the external field. This effect would be more pronounced when a higher frequency 

was used. 

Figure 14. Electromagnetic screen model developed by Yin et al. [69]. 

 

4.3. Excitation Coil Design 

Other than the abovementioned techniques, excitation coil design also plays an important role in 

minimizing the effect of the primary field [72,73]. Stawicki et al. [74] had proposed an exciting coil 

design as seen in Figure 15, which has a conducting shield to protect the primary field from scatter 

around and also to the outside. A ferrite core which has high permeability relative to the surrounding 

air, is located at the centre of the screen and is capable of concentrating the primary magnetic field 

lines in the core material itself. The presence of the ferrite core which made this design different from 

others, could increase the magnetic field of a coil by a factor of several thousand compared to without 

the use of the core. 

Barba et al. [75] had almost the same design as Stawicki and his group. They had explained the 

objective of their design through the diagram in Figure 16(a). Based on the diagram, the axial induction 

field Bz should be maximized (along line A–B) while it should be minimized along line (C–D) as in 

Figure 16(b). Related to that, more proactive action had been taken in their experiment where each 

electronic modules for excitation and receiving coil were mounted at the outer wall of the tank and 

each was placed in a separate metallic case for shielding purposes [76]. 

  



Sensors 2012, 12 7139 

 

 

Figure 15. Coil system produced by Stawicki et al. [74] where A is the excitation coil 

screen, F is ferrite core and O is the object. 

 

Figure 16. (a) Exciting Coil system produced by Stawicki et al. [74]; (b) Device model by 

Barba et al. [75]. 

  

(a) (b) 

4.4. Sensor Arrangement 

In MIT, the location of the receivers affects the quality of the image reconstruction in terms of 

primary field effect cancellation. Watson et al. [77] had suggested that primary field compensation for 

a planar array can be done through a sensor coil (Bx sensor) which is aligned in such a way that it 

provides zero sensitivity to the excitation field because no magnetic flux threads it. The system as in 

Figure 17 employed a 10 µH surface mount chip inductor with a ferrite-cored miniature solenoid and 

provided suitable sensitivity and resonant characteristics over the frequency range 1–10 MHz. Through 

this sensor, the noise and drift in the signal were reduced by factors of 43 and 51 respectively, relative 

to the uncompensated orientation. The large improvement in noise and drift performance was due 

entirely to the reduction in the sensitivity of the sensor to the primary excitation field. 
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Figure 17. Sensor-coil alignment system by Watson et al. [77]. (a) Sensor-coil alignment 

for zero sensitivity concepts; (b) measurement platform. 

 

(a) 

 

(b) 

Igney et al. [71] enhanced the experiment done by Watson et al. [77] by changing the normal 

excitation coil to a shielded PCB printed excitation coil as shown in Figure 18. They had reported that 

the planar array was found to provide flux-linkage minimization of the primary field for all channel 

combinations, on average by a factor of around 20, and ranging from 50 for channel combinations in 

which the excitation and measurement coils were close to each other. Larger improvements in noise 

and drift, by factors of 14 and 27, respectively, were observed in the real component. The system was 

found to provide a SNR of 30–50 dB over the frequency range 1–8 MHz, based on the peak value for 

all channels. This higher SNR was contributed to by the accurately designed PCB printed excitation 

coil and the use of a surface mount inductor as sensor, compared to hand winding with which it was 

very difficult to get sufficient accuracy. Accurate design provided the excitation coil-Bx sensor with 

perfect alignment, hence improving the efficiency of the insensitivity to the primary field effects.  

Watson et al. [51] had examined the relative performance of axial gradiometers and coil-orientation 

methods (Bx sensors) through computer simulation of the sensitivity profiles produced by a single 

sensor and comparison of reconstructed images produced by sensor arrays. The developed system was 

almost the same as developed by Igney et al. [71] but with some additional features as two plane-arrays 

had been included (see Figure 19). They had suggested that the Bx sensor provided better sensitivity  

at depth compared to the axial gradiometer and may be the most suitable sensor for measurements  

of electrical impedance within one excitation coil radius into the sample. However if surface 

measurements were required with the depth sensitivity limited to the surface layer, e.g., measurement 

of electrical impedance of epithelium, then axial gradiometer appeared to be more suitable. 
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Figure 18. Planar-array system developed by Igney et al. [71]. (a) Sensor positioning and 

numbering; (b) Picture of the developed system; (c) Plan view; and (d) side view. 

 

(a) (b) 

 

 

(c) (d) 

Figure 19. Experimental illustration of Watson et al. [51] on planar-array system. (a) 

Gradiometer; (b) Bx sensor; (c) Array scan for single plane geometry; and (d) Array scan 

for two-plane geometry. Tx was excitation coil. 

 

(a) (b) 
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Figure 19. Cont. 

 

(c) (d) 

Eichardt et al. [78] evaluated and compared through simulation the cylindrical and the hemi-

spherical coil setups of two Magnetic Induction Tomography (MIT) systems using sensitivity analysis. 

Two models of cylindrical and three models of hemi-spherical (see Figure 20) have been simulated 

that identified the influence of the number and area parameters of the coils on the sensitivity to 

conductivity changes. Their findings indicated that the hemi-spherical MIT system with a smaller 

distance between the layer of coils and the measurement object showed a clearly higher sensitivity 

compared to the cylindrical MIT system. In addition, the two simulated setups with larger coil areas 

provided higher sensitivities in relation to the standard setups, while the difference between the hemi-

spherical setups using a different number of coils with identical areas was relatively small. They had 

also reported that generally, there was a considerably strong decay of the sensitivity values for an 

increasing distance between the elements and the coils. Their study showed differences of up to seven 

orders of magnitude within the upper hemispherical volume of interest (VOI) considering a specific 

setup. In term of hemi-spherical design, the simulated system (Figure 20(c,d)) was quite similar to that 

of Griffiths et al. shown in Figure 13, however there was no application of aluminum screen where 

both excitation coils and receiving coils were located, on the other hand the excitation coil simulated 

by Eichardt did position it just above the receiving coil. 

Gursoy and Scharfetter [79] had studied a number of receiver array designs with different suggested 

coil orientations and singular value decomposition (SVD) was used as a basis for the analysis. Six 

different designs (D1–D6, see Figure 21) had been demonstrated and evaluated at five SNR different 

values while at each SNR value, each design was obtained as a truncation level. The images 

corresponding to the investigated designs were reconstructed by using the noise-free and noisy data to 

present the artifacts in the images. It was found that the proper choice of the coil orientations 

significantly influenced the number of usable singular vectors and the stability of image reconstruction, 

although the effect of increased stability on the quality of the reconstructed images was not of paramount 

importance. It was found that, each design has its own merits and shortcomings for different imaging 

regions and for different SNR levels. However in considering overall characteristics, D1, D2 and D5 

were found to be more focused to the median plane with high resolution and low image uncertainty. 

For the off-median regions, D4 was found to be moderately better among the others considering the 

practical noise levels of MIT, from 20 to 40 dB. 
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Figure 20. Experimental setup developed by Eichardt et al. [78]. (a) Model A1; (b) Model 

A2; (c) Model B1; and (d) Model B3. The setup B2 uses 16 pairs of coils arranged 

corresponding to B3, but with coil sizes equal to B1. 

 

(a) (b) 

 

(c) (d) 

Figure 21. Coil orientations tested by Gursoy and Scharfetter [79]. Six types of 

corresponding design (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; and (f) D6.  

 

In another study, Gursoy and Scharfetter [80] had introduced a fast deterministic algorithm to 

obtain optimum receiver array designs for a given specific excitation. The design strategy developed 

was based on the calculation of the sensitivity matrix. Therefore, no voltage data simulation or noise 

considerations were needed to obtain optimal designs. Through this algorithm, iterative exclusion of 

receiver locations that yield poor conductivity information from the space spanning all possible 
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locations was done, until a feasible design is reached. MIT designs that are currently used in the 

existing hardware were evaluated, and it was shown that better designs can be achieved for different 

excitation and receiver patterns. They had stated that the method did not guarantee finding the global 

optimum, however, a close approximation is possible by a good initial discretization of the receiver 

geometry. The algorithm was also capable of finding a design that focuses onto a region inside the 

body in increasing the image resolution at that region. 

Dekdouk et al. [81] had done a simulation based on a model of a head as phantom and an MIT system 

to investigate the capability of frequency difference in reducing the error caused by coil positioning. The 

design included of a cylindrical shield and a circular coil array which consisted of 16 excitation coils and 

16 receiver coils. Both excitation and receiver coils were modeled as filamentary and arranged in two 

concentric circles at different radius surrounding the target (see Figure 22). The applied frequencies were 

1 MHz and 10 MHz. The results had shown that there were no improvements on the results of the errors 

due to coil positioning relative to single frequency measurement; hence this inferred that there was no 

advantage to using frequency difference for sensor displacement error cancelation. 

Figure 22. Simulation model developed by Dekdouk et al. [81]. (a) Phantom of head 

model and (b) Model of the MIT system. 

 

(a) (b) 

Bras et al. [82] had came out with their new MIT system as in Figure 23 with recent improvements 

in the measured signal stability and accuracy as well as a much improved angular resolution 

measurement of the multi-coil setup. This prototype had been packaged together with a new 

mechanical design consisted of single excitation coil and eight moving sensing coils which functioned 

to rotate and to move the body vertically. Each pair of opposite sensing coils was directly connected at 

a pre-amplification circuit input. The coils could be mechanically positioned in order to obtain the least 

residual signal possible for each sensing coil pair. The mechanical system was made in a PVC 

material, electrically and magnetically inert and there were no metal structures in an approximately 

1 m diameter around the source coil. 

The used source AC current was 500 mA operated at 870 kHz. This system allowed obtaining 

longer stable and more accurate acquisitions, improving the number of measurements without trends or 

external perturbations which leads to a better conductivity resolution and to an enhanced image 

reconstruction. It had several advantages over the classical circular setup: (i) the sensor position error 

due to movement was not as critical as in the case of a standard setup; (ii) the carrier amplitude was 

not varied considerably along positions, meaning that due to its symmetry no position was preferential. 
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Finally, (iii) it allowed for differential measurements for better excitation field effects suppression, as 

was the case of planar gradiometers. 

Figure 23. New system developed by Bras et al. [82]. 

 

Scharfetter et al. [83] had developed a new technique as in Figure 24 for artifact suppressions 

during object movements through the use of object movements tracking signal which was directly 

from the MIT system through the application of active markers.  

Figure 24. Active marker system developed by Scharfetter et al. [83]. (a) Active marker 

design; (b) Schematic of an active marker system in form of an elastic belt with several 

loop/switch units which were controlled remotely from the data acquisition control unit. 

 

(a) (b) 

The basic idea was to place the active markers (which consist of small loops of a very thin wire 

which can be opened and shorted via a tiny switch) on the surface of the body with the positions were 

chosen such that the markers were in front and very close to gradiometers which located in the zone of 

maximum sensitivity of the coils. The achieved simulated images showed that a reasonably accurate 

reconstruction of the markers can be achieved when assuming an SNR which was closed to that 

determined experimentally. This proved that tracking of object boundaries by only using the MIT 

signal was feasible. However, further investigations need to be done to find the most appropriate 

marker designs and measurement frequencies in achieving the optimum results. 
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4.5. Types of Sensors Used 

Types of sensor used in the measurement will also determine the accuracy of the results since 

magnetic field measurement can be done through the use of several types of sensors. The most 

common and famous one was coils, but there were several researchers who proposed Hall effect 

element component [84] while some were interested in SQUID (Superconductivity Quantum 

Interference Device) for non-destructive evaluation [85,86], besides magnetic sensors [87]. In most 

sensors, the practical limit of the resolution depended on the possibility of achieving the noise floor. 

The smaller the noise floor level, the resolution was much better [56]. Noise floor was the measure of 

the signal created from the sum of all the noise sources and unwanted signals within a measurement 

system, where noise is defined as any signal other than the one being monitored. 

4.5.1. Coil 

Coils had been used by most of the researchers in MIT whereby the magnetic field measurement 

component was based on electromagnetic induction theory. Coils are sensitive only to the flux that was 

perpendicular to their main axis. Tumanski [56] did mention that induction coils which are also known 

as search coils, pickup coils or magnetic antenna were one of the oldest and best known types of 

magnetic sensors. In term of detectable field range, he had concluded that coils were the best compared 

to others (see Figure 25). 

Figure 25. Typical field range of various magnetic field sensors [56]. 

 

4.5.2. Hall Effects Element 

Hall effects elements as the magnetic field measurement component are based on the Hall effect 

concept. The measurement range of Hall effect elements was mainly from 10 gauss to several thousand 

gauss, making them an ideal choice to measure large magnetic fielda but not precise enough to detect 

eddy current induction fields. The operation frequency range of Hall effect elements was from 20 kHz 

to 100 kHz, so they are not suitable to detect high frequency magnetic fields [88]. The noise floor level 

of Hall sensors was ~10 nT Hz
−1/2

 [56]. 

4.5.3. Superconductivity Quantum Interference Device (SQUID) 

A SQUID is an extremely sensitive magnetic flux-to-voltage transducer [85] consisting of two 

superconductors separated by thin insulating layers to form two parallel Josephson junctions. The 
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device may be configured as a magnetometer to detect incredibly small magnetic fields at less than pT 

level (See Figure 26). The noise floor level of SQUID was ~50 fT Hz
−1/2

 [83]. Krause et al. [89] had 

developed a pulsed eddy current NDE technique through the application of a High Temperature 

Superconductor (HTS) SQUID which allowed simultaneous analysis of the sample at all depths. The 

advantage of SQUID magnetometers over induction coil sensors was that the field did not decay as 

rapidly as its time derivative, allowing for a broader range of investigated depths. In a coil, the field 

derivative dB/dt decayed much faster and therefore, reached the noise level much earlier than the 

transient of the field itself. This means, compared to a coil, a magnetometer sensor potentially can 

record the transient data at later times. Anyhow compared to other sensors the SQUID was quite 

expensive [88]. 

Figure 26. Typical resolutions of various field sensors [56]. 

 

4.5.4. Magneto-Resistive Sensors 

Magnetic sensors make used of the magneto-resistive effect whereby a magnetic material changes 

its resistance in the presence of an external magnetic field. There was no dB/dt dependence unlike in 

coils. They are high precision, have a wide frequency range and quite low cost. Liu et al. [88] had proposed 

a Honeywell HMC1021Z magnetic sensor in his MIT research. This sensor has a Set/Reset function 

which can eliminate the magnetic field disturbances outside. The noise floor level of magneto-resistive 

sensors is ~100 fT Hz
−1/2

 compared to that of coils which is less than 100 fT Hz
−1/2

 [56]. 

4.6. Electronic Circuit 

Korjenevsky et al. [42] had reduced the electric coupling through common mode rejection by the 

differential inputs at the receivers. However no detailed circuits and results on the electric coupling 

reduction had been reported. Watson et al. [48] had used the same common mode rejection technique 

as Korjenevsky, but providing some explanation of the circuit diagram of the receiver circuit as in 

Figure 27. They had used OPA3682, an instrumentation amplifier with a gain of two as receiver front 

end, allowing conversion of the received signal from balanced to unbalanced while providing some 

rejection of capacitive coupling. This capability was due to the disable functions of the OPA3682 

which placed the inputs into a high impedance state, allowing isolation of the transmitter coil when not 

in use, thus cutting off the current from flowing in the excitation coil and so to avoid capacitive 

coupling. The output signal was then mixed with local oscillator signal and then further went to three 

stages of amplification of 97 dB in total. The filtering process used a first order band pass filter of  

−3 dB attenuation at 8 kHz and 12 kHz. However no detailed analysis on noise elimination 

performance was reported.  

  



Sensors 2012, 12 7148 

 

 

Figure 27. Receiver circuit developed by Watson et al. [48]. 

 

In term of phase drift measurements, Watson et al. [54] had found that the vector-voltmeter system 

showed a performance advantage by a factor of 2 and this was likely due to the superior stability 

provided by digital filtering compared to analog filtering. It was also reported that a phase error existed 

during the time delay between measuring the frequency of the reference and demodulating the received 

signal with the synthesized reference, that was greatly reduced when the uncompensated crystal 

oscillators in the transmitters were replaced with temperature compensated ones. Watson et al. [77] in 

their new study had reported the small surface mount inductors were found to produce satisfactory 

performance in terms of noise, drift and linearity and were readily available and inexpensive. 

Figure 28. MIT spectrometer system developed by Watson et al. [29]. (a) Hardware of the 

experiment; (b) the detector circuit.  

 

(a) (b) 

Latest, Watson et al. [29] had introduced a highly phase stable differential detector amplifier for 

magnetic induction tomography for the purpose of achieving the required phase measurement 

precision. To reach this objective, he and his team had developed an ultra-phase-stable, low noise 

inst umentation amplifie  with p oven ave age change of − .  ±  .6 m∙°C
–1

 as the ambient temperature 

was varied between 35 and 50 °C, with gain of 21 at 10 MHz operational frequency as in Figure 28.  
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4.7. Multi-Frequency Technique 

The multi-frequency technique in MIT is the application of multiple frequencies during operation. 

This technique is capable of reducing the acquisition time and drift errors [7], while producing better 

sensitivity in different regions within the object [72]. This is because errors in the absolute values do not 

affected the results strongly, due to separating system drifts and temporal changes of the conductivity 

data [31].  

Scharfetter et al. [31] had developed a magnetic induction spectroscopy (MIS) system as in Figure 7 

where the explanation on the system performance also had been discussed. They had suggested that  

the exploitation of multi-frequency information should be done through the implementation of  

Cole-Cole parameters in separating the system drift and temporal changes of conductivity data, which 

has more to do with signal processing than hardware as is the focus of this article. 

Ferrer et al. [7] had developed 14-channel multi-frequency (50 kHz–1 MHz) magnetic induction 

tomography system (MF-MIT) where the excitation field was produced by a single coil and 14 planar 

gradiometers were used for signal detection (see Figure 29). The real and imaginary parts of B/B0 

were calculated using coherent demodulation at all injected frequencies. They had found that for long 

acquisition times the drift in the signal produced a bigger effect than the input noise (typical STD was 

10 nV with a maximum of 35 nV at one channel), but this effect was reduced using a drift cancellation 

technique based on averaging. 

Figure 29. Multi-frequency system design developed by Ferrer et al. [7]. 

 

Brunner et al. [41] had implemented a differential multi-frequency technique in their system with 

the objective of reconstructing the shape of the conductivity spectra. Two reference frequencies had 

been used, 100 kHz and 300 kHz. Through this differential character method, the spectra did not 

provide absolute conductivities but preserved the shape of the spectrum. In term of artifacts, the 

occurrence depended on the sensitivity matrix and the regularization parameter chosen, but it always 

exists. In term of errors, the use of different reference frequencies should minimize the errors because 

of the better validity of the ‘small pe tu bation’ assumption with increasing frequency, for example at 

lower conductivity steps.  
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In conclusion, multi-frequency is self-referencing and allows changes in conductivity with frequency, 

particularly of biological tissues, to be measured directly, without the need for another reference. In 

addition, errors in the assumed geometry tend to cancel as they will be the same for all frequencies. 

5. Future Research Aspects 

Based on the review, it can be seen that MIT system is an interesting research area that needs to be 

explored. There are still many ways MIT systems can be improved, even with the aggressive research 

that has been carried out by previous and current researchers with successful outcomes.  

Further development on the applied sensors, jig design and also electronic circuits are needed since 

these are the front end of the system which is crucial in data collection. The study on material and shape 

of screen of excitations coil together with suitable specification and geometry for coil parameters may 

help in boosting optimum focusing capability of the primary field on the object of interest, hence 

increasing the value of the secondary field generated by the object itself. The design of the sensor jig also 

needs to incorporate the real scale of the dimension in such a way that it could be used for clinical 

purposes in future imaging instruments. The future research also should take into account the anisotropic 

properties of biological tissues, since this issue has to be addressed in real clinical imaging instruments. 

Image reconstruction algorithms also cannot be put behind, since very good quality images not only 

depend on the measurements and signal processing side, but also on great design on the image 

reconstruction algorithm side. The algorithms should not only be limited to linear types, but should 

also focus on the non-linear or semi-linear which may produce useful clinical results either in 2D, 3D 

or both, for static and/or dynamic imaging of the body. 

On the other hand, the design also has to consider the real world problem of the errors  

due to body movements and unspecified physiological changes, for example the body temperature  

and sweating. 

6. Conclusions 

In this article, challenges and recent advances on sensor and transmitters for the MIT technique are 

described. Several techniques have been introduced in solving or eliminating the primary field effects 

and noise problems that occur at the receiver side which is the great challenge in biological tissue 

imaging due to its very low conductivity. The action taken covers both sides; transmitters and also 

receivers. On the transmitter or excitation side, screens have been introduced to the excitation coil 

where this may focus the primary field on the region of interest while minimizing the scattered field to 

the neighboring circuits. On the receiver side, gradiometers, Bx sensors, sensor arrangement 

techniques, selection of high sensitivity sensors and also the introduction of highly stable phase 

detector differential amplifiers have had a positive outcome in improving the performance of the MIT 

systems. However further research need to be carried out in enhancing and upgrading the current MIT 

systems to make them more fascinating and applicable as a real imaging system in the medical 

imaging industry. 
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