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ACB automatic contrast brightness 

Acc. Voltage accelerating voltage 

aF atto farad 

AFM atomic force microscope 

APC automatic pressure control  

BE detector backscattered electron detector  

BOE buffered oxide etch 
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CB effect coulomb blockade effect 
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CNT carbon nano tube 

CVD chemical vapor deposition  

DC bias direct current bias 

DXF drawing exchange format  

E-beam electron-beam 

E-beam lithography electron-beam lithography 

ECR electron cyclotron-resonance  

EDAX energy dispersive absorption X-ray  

EDX  energy dispersive X-ray  
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LIST OF SYMBOLS 

Quantity Symbol Unit  

Energy E  Joule J 

Coulomb energy (charging energy) CE  electron volt eV 

Frequency ω  Hertz Hz 

Lateral radius of quantum dot a  nanometer nm 

Effective mass of electron em  kilogram kg 

Electron elementary charge e  Coulomb C 

Density of energy states ( )ED  Joule-1meter-3 J-1m-3 

Capacitance C  Farad F 

Capacitance of gate gC  Farad F 

Capacitance of middle junction mC  Farad F 

Total capacitances of islands ∑C  Farad F 

Capacitance of dot dotC  Farad F 

Electrostatic potential V  volt V 

Voltage of gate gV  volt V 

Tunneling rate of electron Γ  Hertz Hz 

Angle between corresponding spin 

moments 

β  degree ° 

Absolute temperature T  Kelvin K 

Electric current I  ampere A 

Beam current beamI  microampere μA 

Time of electron tunneling through tτ  second s 
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