DESIGN AND FABRICATION OF QUANTUM DOT SINGLE-ELECTRON TRANSISTORS USING SCANNING ELECTRON MICROSCOPY-BASED ELECTRON-BEAM oritestinal correction NANOLITHOGRPHY

sution is protected **UNIVERSITI MALAYSIA PERLIS**

121 COPYI **DESIGN AND FABRICATION OF QUANTUM** DOT SINGLE-ELECTRON TRANSISTORS **USING SCANNING ELECTRON MICROSCOPY-BASED ELECTRON-BEAM** NANOLITHOGRPHY

by

SUTIKNO 0540110043

thisternist A thesis submitted In fulfillment of the requirements for the degree of Doctor of Philosophy

School of Microelectronic Engineering UNIVERSITI MALAYSIA PERLIS

2009

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF THESIS
	Author's full name : Sutikno Date of birth : November 20 th , 1974 Title : Design and Fabrication of Quantum Dot Single
	Electron Transistors using Scanning Electron Microscopy-based Electron-Beam Nanolithography Academic Session : 2008/2009
	I hereby declare that the thesis becomes the property of Universiti Malaysia
	Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as:
	CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)
	RESTRICTED (Contains restricted information as specified by the organization where was done)
	OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
	I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only.
CTHI	Certified by:
	A076441 PROFESSOR DR. UDA HASHIM
	Date: Date:

GRADUATE SCHOOL

UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfillment of a post graduate degree from Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly may be granted by supervisor or, in their absence, by Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to Universiti Malaysia Perlis for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or make other use of material in whole or in part of this thesis to be addressed to:

Dean of Graduate School of Universiti Malaysia Perlis

Thist

Jalan Bukit Lagi, 01000 Kangar,

Perlis

Malaysia

DEDICATION

Al-Fatihah to my dad, Allahyarham Madnasri, may Allah S.W.T. bless you. Special dedication to may mum, Marwati, and my wife. Noor Aini Habibah, thanks for the support and the pray. Al-Fatihah is also to my children (Muhhammad Noordien and Shafa Noor Aulia). May Allah S.W.T. bless all of us, amien. Thank you.

nalcopyticht

ACKNOWLEDGEMENTS

I have received help from many people during my time in graduate school. From the bottom of my heart, I would like to thank my supervisor, Prof. Dr. Uda Hashim, for providing me with a research project and supporting me for many years. Without his patient and intelligent guidance, my Ph.D. research would not be possible. I am very grateful to my co-supervisor, Prof. Dr. Zul Azhar Zahid Jamal, for taking an interest in my research, for many illuminating discussions. I thank Prof. Dr. Samsudi Sakrani and Dr. Putut Marwoto for guiding me towards the Ph.D. program at the School of Microelectronic Engineering, the University of Malaysia Perlis (UniMAP). I thank Mr. Phang Keng Chew and Encik Hafiz for helping me with many experimental techniques and maintenances. I am very glad to have collaborated with all SETs-IRPA group researchers such as Prof. Dr. Yussof Wahab, Assoc. Prof. Dr. Zulkafli Othman, Assoc. Prof. Dr. Radzi Mat Isa, Dr. Sabar D. Hutagalung and all their post graduates students. I express my gratitude to Assoc. Prof. Zaliman Sauli, Dean of School of Microelectronic Engineering. I am grateful to friends and colleagues for their support and assistance during this time, in particular to Cikqu Kasim, Nur Hamidah Abdul Halim, Chin Seng Fatt, Ikhwan, Emy, Sahri, Azizul and Maezatun, for making my time here more enjoyable. Finally, I acknowledge financial support from the IRPA (Intensification of Research in Priority Areas) Project of Ministry of Science, Technology and Innovation (MOSTI) (Grant no. IRPA 09-02-15-0000-SR0013/06-060) and Graduate Assistanship (GA) Program of Universiti Malaysia Perlis (UniMAP).

iv

CHAPTER	TITLE	PAGES
	DECLARATION OF THESIS	i
	COPYRIGHT	·iio
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	TABLE OF CONTENTS	V V
	LIST OF FIGURES	xi
	LIST OF TABLES	xviii
	LIST OF ABBREVIATIONS	xix
	LIST OF SYMBOLS	xxii
	LIST OF CONSTANTS	XXV
	ABSTRAK	xxvi
	ABSTRACT	xxviii
1.0	INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	4
1.3	Research Objectives	6
1.4•,	Research Scope	6
1.5	Thesis Organization	8
Lett.		
2.0 2.1	LITERATURES REVIEW	10
2.1	Introduction	10
2.2	Definition of Quantum Dot	11
	2.2.1 Energy States in Quantum Dots	14
	2.2.1.1 Single Island System	16
	2.2.1.2 Double Island Systems	20
	2.2.3 Kondo Effects	22
	2.2.4 Orthodox Theory for Electrons Transport	25
2.3	Types of Quantum Dots	26

		2.3.1	Self-Orga	anized	Quantum	n Dot			27
		2.3.2	Top-Dow	n Fabr	icated Qu	uantum	Dot		29
	2.4	Conve	entional	Transis	stor ve	ersus	Single-Ele	ctron	30
		Transi	stor						
		2.4.1	Conventi	onal Tr	ansistor				30
		2.4.2	Single-El	ectron	Transisto	or			32
			2.4.2.1	Devel	opment c	of SETs	Designs	. 1 ^A	36
			2.4.2.2	Devel	opment	of SE	Ts Fabric	ation	50
				Techr	ologies		C	OY I	-
				(i).	Step Ed	lge Cut	Off Method	1	52
				(ii).	Lift off N	Nethod			53
				(iii).	Microstr	rips Met	hod		53
				(iv).	Pattern	Depen	dent Oxid	ation	54
					Method	3			
				(v).	AFM Na	anolitho	graphy Me	ethod	55
				2	Combin	ed	with	Self	
			,		Assemb	oled Tec	hnique		
				(vi).	Artificial	l Patte	ern Form	ation	56
			X O		Method	Based	on STM N	lano-	
			0,		Oxidatio	on Proce	ess		
				(vii).	Shadow	/ Evapo	ration Meth	nod	56
	•		Y	(viii).	Self Ass	sembled	Method		57
	0	*		(ix).	Bended	Wire M	ethod		58
				(x).	Sidewal	ll Patteri	ning Metho	d	58
				(xi).	Double	Angle M	lethod		59
nhis te	2.5	Electri	cal Prope	rties of	SETs				59
		2.5.1	Coulomb	Blocka	ade Oscil	llation			60
		2.5.2	Electron	Tunnel	ing in Sili	icon			66
	2.6	Applic	ations of S	SETs					68
		2.6.1	Integratio	on of SI	ET in Lar	ge Scal	е		71
		2.6.2	Linking S	ETs w	ith The O	Outside E	Environmei	nt	71
	2.7	Chapt	er Summa	ıry					72

3.0	SINGLE-ELE	CTRON	TRANSISTORS	DESIGN	73
	USING GDSI	EDITOR			
3.1	Introduction				73
3.2	Electron-Bear	m Lithogra	ohy		73
3.3	Software Des	cription			75
	3.3.1 ELPH	HY Quantu	n GDSII Editor		75
3.4	Design Metho	odology			77
3.5	Single-Electro	on Transist	or Design using (GDSII Editor	79
3.6	Chapter Sum	mary		COX	88
4.0	E-BEAM RES		FILES CHARAC	TERIZATION	89
	AND RESIST	NANOPA	TTERNS OPTIM	ZATION	
4.1	Introduction		~ 0		89
4.2	E-Beam Resis	st Optimiza	tion		89
	4.2.1 E-Be	am Resist	A		89
	4.2.1	I.1 Positi	ve E-Beam Resis	st	91
	4.2.1	I.2 Nega	tive E-Beam Res	ist	92
	4.2.2 Optin	nization of	Resist Thickness		94
	4.2.2	2.1 Optim	ization of Nega	tive E-Beam	98
		Resis	t Thickness		
	4.2.2	2.2 Optim	ization of Posi	tive E-Beam	100
٠	SY	Resis	t Thickness		
	4.2.3 Resis	st Profile C	naracterization		102
. x 0 1	4.2.3	3.1 Resis	t Profile Charac	cterization of	102
		Nega	tive ma-N 2403 u	sing AFM	
Thisten	4.2.3	3.2 Resis	t Profile Charac	cterization of	107
		PMM	A using AFM		
4.3			on using E-Beam	Lithography	111
			Fabrication		112
			Beam Lithography		114
	4.3.2		tment of Stage	position and	116
			ng Distance		
	4.3.2	2.2 Selec	tion of Dete	ector Type,	116

vii

		Objective Lens and Pressure	
	4.3.2.3	Adjustment of Focus, Contrast,	118
		Brightness and Astigmatism	
	4.3.3 Optimiz	ation of E-Beam Lithography Process	120
	4.3.3.1	Burn Contamination Dot	122
	4.3.3.2	Adjustment of UVW Window	123
		(i). Coordinates	124
		(ii). Exposure Positions	125
	4.3.3.3	Exposures Parameter	126
		(i). Mask 1 – Source-Drain,	126
		Quantum Dot and Side Gate	
		Mask	
		(ii). Mask 2 – Point Contact	132
		Mask	
		(iii). Mask 3 – Metal Pad Mask	139
	4.3.4 Dots an	d Nanoconstrictions Optimization	141
	4.3.4.1	Optimization of Resist Dot Pattern	142
	4.3.4.2	Optimization of Resist	144
	XO	Nanoconstriction Pattern	
4.4	Chapter Summa	ary	146
	Q'		
5.0		OOT FABRICATION AND ITS	147
\sim	SHRINKING PR	OCESS	
	Introduction		147
5.2		nd Source-Drain Fabrication using ICP	147
	Etcher		
		rely Coupled Plasma Etcher	148
		hing Optimization	151
	5.2.2.1		155
	5.2.2.2	, 0	160
5.3		ntum Dot Shrinkage Process and	163
		Sandwich using TEM	400
	5.3.1 Transm	ission Electron Microscopy	163

	5.3.2	Oxidation	Process	Optimizatio	n	169
		5.3.2.1	Oxidatio	n Process	optimization	172
			using Fu	irnace		
		5.3.2.2	Oxidatio	n Process	optimization	175
			using Ra	apid Therma	al Processing	N.
	5.3.3	TEM Cha	racterizat	tion		176
		5.3.3.1	Sample	Preparation	4	176
		5.3.3.2	TEM Ima	aging	0	184
			(i). Q	uantum Dot	Embedded	185
			S	iO ₂ Tunnel I	Barriers	
			(ii). D	etermination	n of Quality of	187
			S	iO ₂ Tunnel	Barriers using	
			E	DAX	0	
5.4	Chapter	Summary	/			190
			20	A		
6.0	OPTIMI	ZATION	OF	NANO	MULTILAYERS	192
	ALIGN		NG SEM			
6.1	ALIGNN Introduc	K	NG SEM			192
6.1 6.2	Introduc Literatu	tion res Study	of Nano N	Marks Fabrio		192 192
	Introduc Literatur Position	ction res Study Accuracy	of Nano N of Stage	during Stag	cation ge Movement	
6.2	Introduc Literatur Position Platinun	tion res Study	of Nano N of Stage	during Stag		192 195 196
6.2 6.3 6.4	Introduc Literatur Position Platinum	ction res Study Accuracy n Marks F	of Nano M of Stage abrication	during Stag	ge Movement	192 195
6.2 6.3 6.4	Introduc Literatur Position Platinum	etion res Study Accuracy n Marks F Marks Ma	of Nano M of Stage abrication aterials Se	during Stag า election and	ge Movement	192 195 196
6.2 6.3 6.4	Introduc Literatur Position Platinum	etion res Study Accuracy n Marks F Marks Ma	of Nano M of Stage abrication aterials Se	during Stag า election and	ge Movement Testing	192 195 196 196
6.2 6.3 6.4	Introduc Literatur Position Platinum	etion res Study Accuracy n Marks F Marks Ma Silicon D PECVD Platinum	of Nano M of Stage abrication aterials Se Dioxide Thin	during Stag n election and hin Film D	ge Movement Testing	192 195 196 196
6.2 6.3 6.4	Introduc Literatur Position Platinum	etion res Study Accuracy n Marks F Marks Ma Silicon D PECVD	of Nano M of Stage abrication aterials Se Dioxide Thin	during Stag n election and hin Film D	ge Movement Testing eposition using	192 195 196 196 200
6.2 6.3	Introduc Literatur Position Platinum	etion res Study Accuracy n Marks Fa Marks Ma Silicon D PECVD Platinum Sputtering Platinum	of Nano M of Stage abrication aterials Se Dioxide Th Thin g Marks Ete	during Stag election and hin Film D Film Dep ching Optim	ge Movement Testing eposition using cosition using	192 195 196 196 200
6.2 6.3 6.4	Introduc Literatur Position Platinum	etion res Study Accuracy n Marks Fa Marks Ma Silicon D PECVD Platinum Sputtering Platinum Alignmen	of Nano M of Stage abrication aterials Se Dioxide Thin g Marks Ete t of Quan	during Stag election and hin Film D Film Dep ching Optim ntum Dot, So	ge Movement Testing eposition using position using	192 195 196 196 200 202
6.2 6.3 6.4	Introduct Literatur Position Platinun 6.4.1 6.4.2 6.4.3 6.4.3 6.4.4 6.4.5	etion res Study Accuracy n Marks Fa Marks Ma Silicon D PECVD Platinum Sputtering Platinum Alignmen Gate with	of Nano M of Stage abrication aterials Se Dioxide Thin g Marks Ete that of Quant of Quant	e during Stag election and hin Film D Film Dep ching Optim ntum Dot, So ontact	ge Movement Testing eposition using bosition using hization burce-Drain and	192 195 196 196 200 202 203 203 208
6.2 6.3 6.4	Introduct Literatur Position Platinun 6.4.1 6.4.2 6.4.3 6.4.3	etion res Study Accuracy n Marks Fa Marks Ma Silicon D PECVD Platinum Sputtering Platinum Alignmen Gate with Alignmen	of Nano M of Stage abrication aterials Se Dioxide Thin g Marks Ete that of Quan of Quan of Quan of Alu	e during Stag election and hin Film D Film Dep ching Optim ntum Dot, So ontact uminium M	ge Movement Testing eposition using bosition using ization burce-Drain and etal Pad with	192 195 196 196 200 202 202
6.2 6.3 6.4	Introduct Literatur Position Platinun 6.4.1 6.4.2 6.4.3 6.4.3 6.4.4 6.4.5 6.4.6	etion res Study Accuracy n Marks Fa Marks Ma Silicon D PECVD Platinum Sputtering Platinum Alignmen Gate with Alignmen	of Nano M of Stage abrication aterials Se Dioxide The Dioxide The Thin g Marks Ete tof Quan of Quan of Ont Co tof Alu Dot and	e during Stag election and hin Film D Film Dep ching Optim ntum Dot, So ontact	ge Movement Testing eposition using bosition using ization burce-Drain and etal Pad with	192 195 196 196 200 202 203 203 208

7.0	CONCLUSIONS	215
7.1	Introduction	215
7.2	Conclusion	215
7.3	Future Works	218
	REFERENCES	2200
	APPENDICES	241
А	Publications in Peer Reviewed International Journals	241
В	Publications in National Journals	242
С	Publications in Conferences Proceedings	243
D	Publications in Expositions	246
Cuticston	spotected	

LIST OF FIGURES

	Figure No.	Caption	Pages
	2.1	Schematic of a QD, in the shape of a disk, connected to source and drain contacts by tunnel junctions and to a gate by a capacitor (a) shows the lateral geometry and (b) the vertical geometry	13
	2.2	Schematic diagram of the ferromagnetic SET. The arrows indicate the net spin moments of the island and left electrode, forming an angle β . The electrode on the right is nonmagnetic	17
	2.3	Configuration for a double QD	21
	2.4	Kondo effect in (a) a metal, and (b) QD	23
	2.5.	Schematic energy level diagram for SET	23
	2.6	$1 \times 1 \ \mu m^2$ AFM images of samples A, B, C and D with	28
	2.0	the uncapped InAs QDs formed on different In Ga_xAs_{1-x}/InP matrixes	20
	2.7	QDs fabricated by top down method and lift off process	29
	2.8	Schematic of point-contact channel MOSFET	31
	2.9	Transfer of electrons is (a) one-by-one in SET, which	32
	2.5	is in contrast with (b) conventional MOSFET where	52
		many electrons simultaneously participate to the drain	
	2.10	current Principle of (a) Coulomb blockade, and (b) current- voltage characteristics for Coulomb blockade	34
	2.11	Schematic of current flow in the simple SET structure	34
	2.12	Schematic of resistively coupled SET	36
	2.12	Design of SET in SOI	37
	2.13	Structure of a silicon quantum wire and the cross	38
	2.14	section of the wire region after pattern-dependent	50
		oxidation. Oxidation is enhanced in the hatched regions	
	2.15	Schematic drawing of QD SET structure	38
	2,16	Schematic of QD SET structure with two nanoconstrictions	39
N	2.17	(a) Schematic of SET structure and (b) SEM micrograph of a SET	39
	2.18	SEM micrograph of electrode that defines SET	40
	2.19	Schematic of a silicon-based SET fabricated by using	41
	20	direct electron-beam irradiation	
	2.20	SEM micrograph of QD SET structure	41
	2.21	Schematic of SET with point contact channel	42
	2.22	Schematic of QD SET structure	43
	2.23	Schematic of SET structure	44
	2.23	Schematic of SET structure with non volatile memory	44
	2.2 7	function	

2.25 45 SETs in SOI and nanocrystalline silicon material: (a) Lithographically defined island with side gates in SOI material, (b) nanowire with side-gates in SOI material (c) contact with side-gates and. point in nanocrystalline silicon material 2.26 Schematic of QD SET structure with oxide and 47 aluminium gate 2.27 Two versions of SET wire geometry, (a) with one continuous CrO_x wire on top of a gold island; (b) with two CrO_x wires connecting a gold island to source and drain 2.28 Schematic of the transistor structure 48 49 2.29 Design of (a) QD SET pattern and (b) after RIE pattern 2.30 SEM micrograph, schematic top view, and equivalent 49 circuit of the silicon single-charge-transfer-anddetection device 2.31 (a) Schematic and (b) SEM micrograph of the device 50 A schematic diagram of the double tunneling junction 2.32 55 system, showing the resistance and the capacitance of each individual junction 2.33 A microelectronic device for trapping electrons on 57 helium 58 2.34 SEM micrograph of 110-nm-wide wire with bends 2.35 (a) Schematic cross section of the geometry 62 consisting of QD weakly coupled to two electron reservoirs via tunnel barriers (hatched). (b) Profile of the electrostatic potential energy (solid curve) along a line through the tunnel barriers. The Fermi levels in the left and right reservoirs, and the discrete energy levels in the QD, are indicated (dashed lines) 2.36 CBO by sweeping Vg before (dotted) and after (solid) 64 charging the helium surface. Jumps in the phase f (see arrows) can be seen as free electrons enter the trap (a) Schematic diagram, (b) X-TEM photograph, (c) 67 equivalent circuit of the double-barrier structure and (d) in plane-view AFM image of nanocrystalline silicon after the gate SiO₂ layer removed by diluted HF solution 2.38 68 Band diagram schematically shows the loading process of electrons into the energy levels of nano crystalline silicon dot at low frequency (a) and the equivalent circuit at high ac frequency (b) 2.39 Circuit and layout of a single-electron memory 69 3.1 Overview of graphic user interface (GUI) ELPHY 76 Quantum GDSII Editor 3.2 Flow chart of mask design steps 78 The source-drain mask is designed using ELPHY 83 3.3 Quantum GDSII Editor offline software.

3.4	Source-drain, QD and side gate mask: (a) SET	84
	structure dimension and (b) projection of QD SET	
	structure after lithographic process	
3.5	Point contact mask that is made using ELPHY	85
	Quantum GDSII Editor software	
3.6	Point contact mask: (a) Structure dimension of point	85
	contact mask and (b) projection of QD SET structure	
3.7	after etch using BOE Metal pad mask, made using ELPHY Quantum GDSII	96
3.7	Editor Software offline	86
3.8	Metal pad mask: (a) Dimension of metal pad mask	87
0.0	structure and (b) Projection of metal pad mask	01
3.9	Complete mask layout of the structure of QD SET,	88
010	made using ELPHY Quantum GDSII Editor Software	
	offline	
4.1	Various photoresists: (b) 495 K and 950 K PMMA	93
	resists, and (b) negative tone photoresist ma-N 2403	
	and developer solutions ma-D 532	
4.2	Process flow of resist thickness measurement	95
4.3	(a) Schematic of substrate dimension and (b) Si	95
	samples of 10 mm x 10 mm in dimensions	07
4.4	Substrate cleaning procedure: (a) samples were	97
	dipped in piranha for 30 s at 90 °C, (b) samples were	
	washed using DI-water, (c) samples were dried using	
	spinner and (d) samples were heated-up at 200 °C for 30 min	
4.5	Spectrophotometer	98
4.6	Surface colours of negative resist ma-N 2403 spun on	99
	the Si substrate with spin speeds within the range of	
	1000-6000 rpm	
4.7	Resist thickness of ma-N 2403 within spin speeds	100
•	range of 1000-6000 rpm	
4.8	Surface colours of PMMA spincoated on the Si	101
	substrate with spin speeds within the range of 1000-	
	6000 rpm	404
4.9	AFM image of PMMA film spincoated on glass	101
C1 10	substrate. Pits are marked by dashed-line circles Resist thickness of 2% 495K MW PMMA with anisole	102
4.10	within the spin speeds range of 1000 to 6000 rpm	102
4.11	AFM images of 3D surface profiles of negative resist	103
	ma-N 2403 within spin speeds of 1000-6000 rpm	100
4.12	Average roughness of negative resist ma-N 2403	105
	surface between spin speeds of 1000-6000 rpm	
4.13	AFM images of negative resist ma-N 2403 grain size	106
	distribution within spin speeds of 1000-6000 rpm	
4.14	Average grain size of negative resist ma-N 2403	107
4.45	surface within spin speeds of 1000-6000 rpm	100
4.15	AFM images of 3D surface profiles of 495K PMMA	108
4.16	within spin speeds of 1000-6000 rpm Average roughness of 495 K PMMA resist surfaces	109
4.10	Average loughiness of 435 K FIMIMA Tesist sullaces	103

xiii

	within onin an ends of 4000 C000 mm	
4.17	within spin speeds of 1000-6000 rpm AFM images of grain size distribution within spin	110
4.17	speeds of 1000-6000 rpm	110
4.18	Average grain size of 495 K PMMA resist surface	111
4.10	within spin speeds of 1000-6000 rpm	
4.19	SEM-based e-beam lithography	115
4.20	Picture of display of SEM monitor for adjustments of	116
1.20	stage position and working distance	
4.21	SEM image of contaminant particle for object	119
	focusing	
4.22	Display of gun alignment button of SEM	120
4.23	Process flow of e-beam patterning	121
4.24	SEM image of a contamination dot	123
4.25	Determination of sample coordinates for e-beam	125
	lithography exposure	
4.26	Exposure positions in sample coordinates	126
4.27	High power optical microscope images of sample with	127
	area step size values of 0.020 up to 0.080 μ m	
4.28	High power optical microscope images of sample with	128
	e-beam doses of 120 up to 170 μ As/cm ² with spot	
4.00	size of 45	400
4.29	High power optical microscope images of masks 1,	129
4.20	exposed using the accelerating voltages of 10-20 kV	100
4.30	High power optical microscope images of masks 1	130
4.31	with spot size between 45 and 15 High power optical microscope images of masks 1	131
4.51	with spot size of 20 and e-beam doses of: (a) 160 and	131
	(b) 180 μ As/cm ²	
4.32	SEM images of mask 1, exposed with spot sizes of	132
4.02	(a) 15 and (b) 20	102
4.33	High power optical microscope images of mask 2,	132
	• exposed within area step sizes of 0.01 up to 0.08 μ m	
4.34	SEM images of mask 2, exposed with area step sizes	133
./	of 0.01 up to 0.08 μm	
4.35	High power optical microscope images of mask 2,	134
	exposed with e-beam doses of 170 up to 280	
	μAs/cm ²	
4.36	SEM images of mask 2, exposed with e-beam doses	135
	of 170 up to 280 μ As/cm ²	
4.37	High power optical microscope images of mask 2,	135
	exposed with spot sizes of (a) 50, (b) 45 and (c) 40	
4.38	SEM images of mask 2, exposed with spot sizes of	136
	(a) 50, (b) 45 and (c) 40	
4.39	High power optical microscope images of mask 2,	137
	exposed with accelerating voltages of (a) 20 kV, (b)	
1 10	15 kV and (c) 10 kV	107
4.40	SEM images of mask 2, exposed with accelerating voltages of (a) 20 kV (b) 15 kV and (c) 10 kV	137
4.41	voltages of (a) 20 kV, (b) 15 kV and (c) 10 kV Top view and 3D AFM images of mask 2 surfaces:	138
4.41	(a), (b) for first sample, and (c), (d) for second sample	100

OTH

	4.42	(a) AFM image in top view of mask 2 and (b) Surface	139
		profile analysis.	
	4.43	High power optical microscope images of mask 3,	140
		exposed within area step sizes of (a) 0.02 µm, (b)	
		$0.04 \ \mu\text{m}$, (c) $0.06 \ \mu\text{m}$ and (d) $0.08 \ \mu\text{m}$	
	4.44		141
	4.44	SEM images of mask 3, exposed with area step sizes	141
		of (a) 0.02 μ m and 0.04 μ m in magnification of 2000X	
	4.45	SEM images of resist mask 1 with dot design widths	143
		within the range of 40-180 nm	
	4.46	AFM images of resist mask 1 with design width of 180	144
		nm (a) and (b), and AFM images of resist mask 1 with	
		design width of 140 nm for (c) and (d)	
	4.47	(a) AFM image in top view and (b) Surface profile	145
		analysis	
	4.48	Images of (a) SEM and (b) AFM of resist dot patterns	146
	5.1	Schematic drawing of ICP etching system	148
	5.2	Picture of RIE-10iP (SAMCO)	150
	5.2 5.3	Process flow of etching optimization using ICP etcher	150
	5.4	SEM images of (a) resist pattern, (b) Si etched for 88	156
		s in 5000X magnification, and (c) inset with 30000x	
		magnification	
	5.5	Lateral etch depth of QD within etching time of 75-85	158
		s v	
	5.6	Lateral etch rate of Si source and drain within etching	159
		time variety ranges from 75 s to 85 s	
	5.7	Nanostructure depth of etched Si in the etch time	159
		range of 79-88 s	
	5.8	Nanostructure surface gradient in the etch time range	160
		of 80-88 s	
	5.9	Lateral QD dimension in the O ₂ flow rate range of 20-	161
		50 sccm	
	5.10 •	Nanostructure depth of etched Si in the O_2 flow rate	161
	0.10	range of 20-50 sccm.	101
	5.11		163
		Schematic drawing of cross section of single cone dot	
	5.12	Nanostructure gradient in the O_2 flow rate range of 20	163
		sccm to 50 sccm	404
	5.13	AFM images (a) in top view and (b) in 3D view of	164
•	3	samples etched for 78 s using O_2 flow rate of 28	
		sccm and CF ₄ flow rate of 30 sccm	
	5.14	Transmission electron microscopy (TEM) system	166
		(PHILIPS TECNAI) in the laboratory of AMREC	
()		SIRIM Malaysia	
	5.15	Schematic presentation of transmission electron	167
		microscopy.	
	5.16	Images of (a) dry oxidation furnace and (b) wet	174
		oxidation furnace	
	5.17	Image of rapid thermal processing system	175
	5.18	(a) Schematic of arrangement of sample, (b) TEM	177
	5.15	sample in dimension of 4 mm x 5 mm, and (c)	
		ultrasonic disc cutter	

xv

5.19	(a) Schematic of sample cutting process using ultrasonic disc cutter, (b) ultrasonic disc cutter, (c)	179
5.20	micron cutting tool and (d) slices of sample Schematic drawing of parallel-sided disk (a) before and (b) after grinding, and (c) Gatan rough grinder	181
5.21	(a) Schematic drawing of dimpled sample and (b) Gatan grinder and dimpler	183
5.22	(a) Schematic of left and right incident beam in polishing sample, (b) focused ion beam (FIB) polishing system, (c) inset of sample loaded in the holder and (d) image of microhole on the polished surface	183
5.23	(a) Sample loaded into TEM holder and (b) image focusing equipment	184
5.24	 (a) White plate before focusing e-beam in light room, (b) schematic drawing of electron transmission through sample and (c) plate after focusing in dark room where focused e-beam appears as green circle 	185
5.25	(a) TEM image of an array of SiO ₂ -embedded-Si QD of RTP oxidized sample and (b) Inset of two Si QDs embedded by SiO ₂	186
5.26	(a) TEM image of an array of SiO_2 -embedded-Si QD of furnace oxidized sample and (b) Inset of a Si QD embedded by SiO_2	187
5.27	(a) TEM image of SiO ₂ -embedded-Si QD after oxidation in furnace for 20 min, (b) EDAX graph of SiO ₂ tunnel barriers and (c) EDAX graph of Si QD	188
5.28	(a) TEM image of SiO ₂ -embedded-Si QD after oxidation in RTP for 20 s, (b) EDAX graph of SiO ₂ tunnel barriers and (c) EDAX graph of Si quantum dot	189
6.1	Flow chart of platinum testing for mark application	197
6.2	Schematic drawing of mark mask for material selection	198
6.3	Schematic structure of aluminium foil mask for Pt deposition	199
6.4	SEM image of surface microstructure of resist coated Pt	200
6.5	Schematic drawing of Al foil mask for SiO_2 deposition: (a) Sample structure used in the SiO_2 deposition and (b) side view of sample structure after SiO_2 deposition	201
6.6	Platinum film thickness deposited for 30 s up to 300 s.	203
6.7	Marks design made using GDS II Editor: (a) "+" lines, (b) "+" lines and four squares and (c) "+" lines, four squares and denote "mark 01"	204
6.8	Schematic drawing of AI foil mask for Pt deposition, (a) mask and (b) device structure	205
6.9	SEM image of Pt mark etched using CF_4 and O_2 for 1 min 45 s	206
6.10	SEM image of etched platinum mark after resist	206

coating

- 6.11 SEM image of platinum mark after etching using SF₆ 207 and Ar gases
- 6.12 (a) SEM image of etched Pt mark that is already 208 coated by resist and (b) SEM image in higher magnification of mark center
- 6.13 Process flow of alignment process using SEM-based e-beam lithography system
- 6.14 Schematic drawing of: (a) Top view of sample surface structure for Si source-drain, QD and gate etching and (b) cross section of sample surface structure after Pt mark etching
- 6.15 SEM images of silicon source-drain, QD and gate
- 6.16 Multilayers structure of design of QD SET
- 6.17 Schematic drawing of zinc foil mask for Al metal 212 deposition
- 6.18 SEM images of alignment results of QD SET 213 structures: (a) without Pt marks and (b) with Pt marks

xvii

209

209

210

211

LIST OF TABLES

Table	Caption	Pages
3.1	QD SET mask design parameter	77
3.2	Comparison of Fabricated SETs	80
4.1	Compositions of RCA 1, RCA 2 and BOE	96
4.2	SEM detector types	117
4.3	Aperture scales and the purposes of uses	118
5.1	Basic Si etch recipe	153
5.2	Elements composition by weight of the furnace- oxidized-sample	188
5.3	Elements composition by weight of the RTP- oxidized-sample	190
6.1	SEM stage positions deviation	195
othisterni	bootecter	

LIST OF ABBREVIATIONS

ACB	automatic contrast brightness		
Acc. Voltage	accelerating voltage		
aF	atto farad		
AFM	atomic force microscope		
APC	automatic pressure control		
BE detector	backscattered electron detector		
BOE	buffered oxide etch		
BOX	buried oxide		
CAD	computer aided design		
CB effect	coulomb blockade effect		
CBE	chemical beam epitaxy		
CIF	caltex intermediate format		
CMOS	complementary metal-oxide-silicon		
CNT	carbon nano tube		
CVD	chemical vapor deposition		
DC bias	direct current bias		
DXF	drawing exchange format		
E-beam	electron-beam		
E-beam lithography	electron-beam lithography		
ECR	electron cyclotron-resonance		
EDAX	energy dispersive absorption X-ray		
EDX	energy dispersive X-ray		
FETS	field effect transistors		
GUI	graphic user interface		
GDSII Editor	graphic display system II editor		
HMDS	hexamethyldisilazane		
IBAD	ion beam assisted deposition		
ICP	inductively coupled plasma		
IPPCM	in-plane point-contact metal		
IPA	isopropyl alcohol		
JQP	josephson quasi particle		

xix

LPCVD	low pressure chemical vapor deposition
LSI	large scale integration
MBE	molecular beam epitaxy
MIBK	methyl-isobutyl ketone
MOSFET	metal-oxide-semiconductor field effect
	transistor
MOCVD	metal oxide chemical vapor deposition
MTJ structures	multiple-tunnel junction structures
OL	objective lens
PAC	photoactive compound 🔨 💛
Padox	pattern dependent oxidation
Pasidox	pattern single dot dependent oxidation
PC	personal computer
PCD Beam Blanker	pico-ammeter detector beam blanker
PECVD	plasma enhanced chemical vapor deposition
PLAD	pulsed laser ablation deposition
PMMA	poly methyl methacrylate
Pt	platinum
PVD	physical vapor deposition
QD, QDs	quantum dot, quantum dots
RF power	radio frequency power
RIE S	reactive ion etching
RMS	root mean square
RTA	rapid thermal annealing
RTP	rapid thermal processing
QDCA	quantum dot cellular automata
SC1	standard cleaning 1
SECO method	step edge cut off method
SEM	scanning electron microscope
SET	single-electron transistor
SFM	scanning force microscopy
STM	surface tunneling microscopy
SiO ₂	silicon dioxide

SOI	silicon on insulator
VLSI	very large scale integration
V-PADOX	vertical-pattern dependent oxidation
WD	working distance
WDS analysis	wavelength dispersive spectrometer analysis
tentister	icinal copyinght

xxi

LIST OF SYMBOLS

	Quantity	Symbol	Unit	
	Energy	Ε	Joule	J
	Coulomb energy (charging energy)	E_{C}	electron volt	eV
	Frequency	ω	Hertz	Hz
	Lateral radius of quantum dot	a	nanometer	nm
	Effective mass of electron	m _e	kilogram	kg
	Electron elementary charge	е	Coulomb	С
	Density of energy states	D(E)	Joule ⁻¹ meter ⁻³	J ⁻¹ m ⁻³
	Capacitance	C	Farad	F
	Capacitance of gate	Cg	Farad	F
	Capacitance of middle junction	C_m	Farad	F
	Total capacitances of islands	C_{Σ}	Farad	F
	Capacitance of dot	C_{dot}	Farad	F
	Electrostatic potential	V	volt	V
•	Voltage of gate	V_{g}	volt	V
	Tunneling rate of electron	Г	Hertz	Hz
	Angle between corresponding spin	β	degree	0
moments				
	Absolute temperature	Т	Kelvin	К
	Electric current	Ι	ampere	А
	Beam current	I _{beam}	microampere	μΑ
	Time of electron tunneling through	$ au_t$	second	S