

by

EMI SHAQIZA AZIZI (0730410181)

A thesis submitted in fulfill requirements for the degree of Master of Science (Materials Engineering)

> School of Material Engineering UNIVERSITI MALAYSIA PERLIS

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful

First and foremost, I would like to express my deepest gratitude to my parents for their support and never ending love. Thank you for giving me the absolute freedom to choose the path of life to walk. This achievement would serve to be one of the first great accomplishments of many more to come.

Next, with a deep sense of gratitude, I wish to express my sincere thanks to my supervisors, Professor Dr. Mohd Noor Ahmad and Dr. A.K.M. Shafiqul Islam, for their immense guidance, dedication and motivation throughout the project years. Their wide knowledge, valuable advice and encouragement have been of great value for me and will be remembered lifelong. It is a pleasure to have the opportunity to learn and work with both of you.

Besides, I would like to extend my warmest thanks to those whom have helped throughout my work especially Dr. Dahcyar Arbain and also to academic staffs and technicians of School Material Engineering, School of Bioprocess Engineering and Agrotechnology Development Unit for their kind assistance trough out my research years. It will be impossible to complete my research as scheduled without their kind arrangement especially the use of SEM, HPLC and other analytical equipments.

Last but not least, I am grateful to my friends especially in Cluster Sensor, Application and Technology (Pak Iqmal, Ridzuan, Kak Nurul, Wahyu, Azuddin, Chin, Saskya, and Fathi) for their encouragement, moral support and understanding. Finally, I would like to take this opportunity to thank all those whom I have not mentioned. Their direct and indirect assistance have had an impact to this thesis. The whole experience of pursuing this MSc programme has taught me to be more independent, patient and in understanding the true meaning of "scientific research".

ontris termis protected by original convited

TABLE OF CONTENTS

Acknow	vledgement	ii
Table o	f Content	iv
List of 7	Tables	ix
List of]	Figures	X
List of A	Abbreviations	xiii
List of S	Symbols	XV
Abstral	x (Bahasa Melayu)	xvi
Abstrac	et (English)	xvii
Chapte	r 1 OTTO	
1.0	Introduction	1
1.1	Overview	1
1.2	Molecularly Imprinted Polymer (MIP) as Selective Sorbent	2
1.3	Solid-Phase Extraction (SPE)	3
1.4	Curcumin as Phytochemicals	4
1.5	Research Approach	5
1.6	Specific Objectives	6
Chapte	r 2	
2.0	Literature Review	7
2.1	History of Molecular Imprinting	7
2.2	Principles of Molecular Imprinting	9

2.3 Types of Molecular Imprinting 12

	2.3.1	Covalent Method	12
	2.3.2	Non-covalent Method	16
2.4	Molecul	ar Recognition	22
	2.4.1	Template	22
	2.4.2	Functional Monomers	24
	2.4.3	Cross Linkers	26
	2.4.4	Porogen	28
	2.4.5	Polymerization	30
2.5	Molecul	ar Modelling for Functional Monomer Prediction	32
2.6	Polymer	Evaluation and Characterization	33
	2.6.1	Batch Binding Analysis and Isotherms	33
	2.6.2	Characterization of MIP by Gas Adsorption Technique	43
2.7	Molecul	arly Imprinted Solid-Phase Extraction (MISPE)	46
2.8	Curcumi	n derived from Turmeric (Curcuma longa)	49
Chapte	r 3		
3.0	Material	s and Method	50
31	Chemica	ıls	50
3.2	Stock an	d Working Standard Solutions Preparation	50
3.3	Molecul	ar Modelling	51
3.4	UV Spec	ctrophotometer Analysis	52
3.5	Preparat	ion of molecularly imprinted polymer (MIP) and non-imprinted	53
	polymer	(NIP)	

Remova	al of Curcumin from MIP using Soxhlet extraction				
Porosity	y and Surface Area Analysis				
Batch Binding Analysis					
3.8.1	A Study on the Selection of Functional Monomers and Porogen	57			
3.8.2	A Study on the Selection of Solvent for Batch Binding	58			
	Analysis				
Isotherm	ns Model	58			
Optimization of Molecularly Imprinted Solid-Phase Extraction					
(MISPE	MISPE)				
3.10.1	10.1 Solid-Phase Extraction (SPE) Studies				
3.10.2	Curcumin Extraction from Turmeric (Curcuma longa)	60			
3.10.3	Pretreatment of Curcumin Extraction using Molecularly	61			
	Imprinted Solid-Phase Extraction (MISPE)				
3.10.4	Curcumin Detection using High Performance Liquid	62			
	Chromatography (HPLC)				
	3.10.4.1 Mobile Phase Preparation	62			
n1.	3.10.4.2 High Performance Liquid Chromatography				
	(HPLC) Determinations	62			
	Porosity Batch B 3.8.1 3.8.2 Isotherm Optimiz (MISPE 3.10.1 3.10.2 3.10.3 3.10.4	 Porosity and Surface Area Analysis Batch Binding Analysis 3.8.1 A Study on the Selection of Functional Monomers and Porogen 3.8.2 A Study on the Selection of Solvent for Batch Binding Analysis Isotherms Model Optimization of Molecularly Imprinted Solid-Phase Extraction (MISPE) 3.10.1 Solid-Phase Extraction (SPE) Studies 3.10.2 Curcumin Extraction from Turmeric (<i>Curcuma longa</i>) 3.10.3 Pretreatment of Curcumin Extraction using Molecularly Imprinted Solid-Phase Extraction (MISPE) 3.10.4 Curcumin Detection using High Performance Liquid Chromatography (HPLC) 3.10.4.1 Mobile Phase Preparation 3.10.4.2 High Performance Liquid Chromatography (HPLC) Determinations 			

Chapter 4

4.0	Results and Discussion	64
4.1	Molecular Modelling for Template – Functional Monomer	
	Interaction	64

4.2	Spectroscopic Evaluation via UV Spectrophotometer			
	4.2.1	Template – Functional Monomer Interactions	68	
	4.2.2	Porogen Effect on Binding Prediction	71	
4.3	Polymer	Preparations and Template Removal	73	
4.4	Physical	Characterization using BET and BJH Analysis	76	
4.5	Batch Bi	inding Analysis	78	
	4.5.1	Functional Monomer Conformation	78	
	4.5.2	Porogen Conformation	83	
	4.5.3	Solvent Adsorption Effect on Polymer	85	
4.6	Isothern	rms Models		
4.7	Molecul	larly Imprinted Solid-Phase Extraction Procedures (MISPE)		
	4.7.1	Optimization of Solid-Phase Extraction (SPE)	92	
		4.7.1.1 pH Effect on Loading Solvent	92	
		4.7.1.2 Washing Solvent	93	
	. 0	4.7.1.3 Eluting Solvent	95	
	. 5	4.7.1.4 Polymer Mass	96	
\langle	4.7.2	Curcumin Extraction from Curcuma longa (Turmeric) and		
		Pretreated with Molecularly Imprinted Solid-Phase Extraction		
		MISPE	97	
Chapte	Chapter 5			
5.1	Conclus	ions	101	

5.2 Recommendations for future works	102
5.2 Recommendations for future works	102

References

Appendices

Appendix A: Standard Curve	
----------------------------	--

Appendix B: Isotherm Models

onthis item is protected by original copyright

121

123

LIST OF TABLES

Table

2.1	Types of non-covalent interactions with importance to molecular	
	imprinting represented by schematic models and examples	19
2.2	Commonly use functional monomers for	
	non-covalent imprinting	25
2.3	Commonly use cross linking agent	28
2.4	Summarization of polymerization formats	31
2.5	Examples of MIP with binding isotherms models	36
2.6	LF-I coefficients for MIP1 and MIP2	42
3.1	The conditions of curcumin added with functional monomer	52
3.2	Polymerization composition	53
3.3	Isotherm model equation	59
3.4	SPE test conditions	60
4.1	Binding energies ΔE of curcumin with MAA and AM	66
4.2	Physical properties of MIP using different porogen and functional	
\langle	monomer	77
4.3	IF value of P1 – P6 in MeOH, 24 h of incubation	83
4.4	Independent t-Test for MISPE and NISPE	100

LIST OF FIGURES

Figure

2.1	Graphical representation illustrating the number of original papers	
	published	8
2.2	Principle of molecular imprinting inspired by Fischer lock-and-key	
	metaphor	10
2.3	Schematic illustration of molecular imprinting	11
2.4	Schematic of covalent imprinted polymer	13
2.5	Covalent imprinting of mannopyranoside using its 4-vinylphenylboronic	
	acid ester	15
2.6	Schematic of non-covalent imprinted polymer	16
2.7	Non-covalent imprinting by theophylline	21
2.8	Batch rebinding approach	34
2.9	Scatchard plot for the binding nature of Resveratrol	35
2.10	Depiction of the typical binding isotherm measured in MIP (thick line).	
	The thin line shows the FI fit	40
2.11	The corresponding AD of FI	40
© '		
2.12	Experimental adsorption isotherm for MIP1 (a) and MIP2 (b) (data	
	points), and corresponding fitted LF-I (lines)	42
2.13	Gas absorbed into solid phase and adsorbed onto a solid surface	
	respectively	44
2.14	Adsorption isotherms according to IUPAC classifications	45

2.15	Vacuum manifold SPE, packed with MIP		
2.16	Basic SPE procedures; (1) Sample loading, (2) Washing off the		
	interferences, (3) Eluting the template	48	
2.17	Structure of curcumin	49	
3.1	Thermal polymerization carried out in water bath	54	
3.2	Soxhlet extraction set up	56	
4.1	Molecular structure of curcumin. 🔲 : Functional group that		
	able to interact with functional group in functional monomer	66	
4.2	Optimized conformations of curcumin, MAA and AM	66	
4.3	(a) and (c) Complex formed between curcumin and two molecules		
	of MAA and AM, respectively. The presence of hydrogen bond is		
	indicated by the dashed black line. (b) and (d) An alternative possible		
	configuration of MAA and AM, respectively	68	
4.4	Complex formed between curcumin and four molecules of		
	AM and MAA, respectively. The presence of hydrogen bonding		
	indicated by the dash black line	69	
4.5	UV spectra of curcumin added with MAA	70	
4.6	UV spectra of curcumin added with AM	72	
4.7	Adding 4 mmol of MAA in different type of porogen	73	
4.8	The morphology of polymer prepared via bulk polymerization method	75	
4.9	Solvent absorbance (a): before template removal and (b) after template		
	removal	76	
4.10	SEM image of MIP (a): before template removal, (b): after template		

removal

4.11	Schematic reaction of imprinted polymer between curcumin and MAA	80
4.12	Standard calibration curve of curcumin in MeOH	81
4.13	Total amout of curcumin bound to polymer, Q in MeOH, initial	
	concentration: 3 µg/ml, 24 hours of incubation	82
4.14	IF value of P1 – P6 in different adsorption solvent	87
4.15	Curcumin binding isotherms for P1. The polymers were incubated in	
	MeOH with an increasing amount of curcumin for 24 h	89
4.16	Curcumin binding adsorption of MIP1 fits to LI	90
4.17	Curcumin binding adsorption of MIP1 fits to FI	91
4.18	Curcumin binding adsorption of MIP1 fits to L-FI	92
4.19	Curcumin bound (%) of loading solvent in MeOH with different pH	96
4.20	Effect on HOAc% in washing step to SPE cartridge	97
4.21	Effect on HOAc% in eluting solvent to SPE cartridge	99
4.22	Effect of recoveries (%) with different polymer weight (mg)	100
4.23	Chromatograms of spiked turmeric samples using MISPE and NISPE	101
4.24	Recoveries (%) of curcumin by MISPE and NISPE	102
\bigcirc	Y Contraction of the second	

77

LIST OF ABBREVIATIONS

%	-	Percent
⁰ C	-	Degree celcius
µg/g	-	Microgramme per gramme
µg/ml	-	Microgramme per millilitre
μm	-	Micron, micrometre
μL	-	Microlitter
a	-	Isotherm constant
AD	-	Affinity distribution
AIBN	-	Azobisisobutyronitrile
AM	-	Acrylamide
AM1	-	Semi empirical - quantum mechanics
В	-	Bound template concentration
BET	-	Brunauer, Emmett and Teller
BJH	-	Barrett-Joyner-Halenda
C _f	-	Free template concentration
Ci	-	Initial concentration
CHCl ₃	-	Chloroform
cm^3/g	-	Cubic centimeter per gramme
d_m	-	Molecule diameter
D_p	- x0	Pore diameter
E _{complex}		Total energy of curcumin with functional
1		monomer
E _{curcumin}	2	Total energy of curcumin
E _{monomer}	-	Total energy of functional monomer
EDMA	-	Ethylene glycol dimethacrylate
F	-	Final concentration
g	-	Gramme
GC	-	Gas chromatography
HOAc	-	Acetid acid
H ₂ O	-	Water
HPLC	-	High performance liquid chromatography
IF	-	Imprinting factor
K_0	-	Median association constant
L	-	Litre
MeCN	-	Acetonitrile
MeOH	-	Methanol
FI	-	Freundlich isotherm
LI	-	Langmuir isotherm
L-FI	-	Langmuir-Freundlich isotherm
m	-	Heterogeneity index
mg	-	Milligramme

m^2/g	-	Square meter per gramme
MIP	-	Molecularly imprinted polymer
MISPE	-	Molecularly imprinted solid-phase
		extraction
ml	-	millilitre
mmol	-	Millimole
mm Hg	-	Millimeters of mercury
NIP	-	Non-imprinted polymer
nm	-	Nanometer
N _t	-	Total number of binding sites
\mathbf{p}_0	-	Saturation pressure of the gas
р	-	preassure
Q	-	Total binding amount
Q _{MIP}	-	Total binding amount of curcumin towards
		MIP
Q _{NIP}	-	Total binding amount of curcumin towards
		NIP
SD	-	Standard deviation
SEM	-	Scanning Electron Micropgraph
SPE		Solid-phase extraction
SPME	O	Solid-phase microextracion
THF	-	Tetrahydrofuran
UV	- x0	Ultraviolet
V	-0-	Volume
V _m	5	Quantity of the gas adsorbed at pressure
w .S	×,	Weight
w/v	-	Weight/volume
\bigcirc		

LIST OF SYMBOLS

ΔE	-	Binding energy	
$\sum_{n=1}^{\infty}$	-	Summation	
π^*	-	Excited state	
۸ ٧	-	wave length	
%	-	Percentage	
			. 6,
			1 CTC
		-0	3
		COX	/
		10	
		, Or	
		the second secon	
	xe	×	
	XO		
	XO		
	$\hat{\mathbf{Q}}$		
٠	XOY		
	\mathbf{N}		
)		
(Y			

ABSTRAK

PENCIRIAN POLIMER BERCETAK MOLEKUL UNTUK PENGEKSTRAKAN KURKUMIN DARI Curcuma longa (Kunyit)

Polimer molekul bercetak (MIP) untuk pengekstrakan selektif kurkumin telah disentesis melalui ikatan bukan kovalen di mana kurkumin digunakan sebagai templat. Polimer dibina dengan menggunakan 2 jenis monomer berfungsi iaitu asid metakrilik (MAA) dan akrilamida (AM) dengan 3 jenis pelarut iaitu klorofom (CHCl3), tetrahidrofuran (THF) dan asitonitril (MeCN). Analisis keluasan permukaan dan keporosan menunjukkan polimer yang dibina menggunakan THF memberikan saiz dimater pori tertinggi iaitu 618.43 nm. Proses pengikatan semula menunjukkan faktor molekul bercetak tertinggi adalah pada polimer yang dibina daripada MAA dan THF. Pencirian seterusnya menggunakan 3 jenis model isoterm iaitu Langmuir (LI), Freundlich (FI) dan Langmuir-Freundlich (LF-I). Solver daripada Micrsoft Excel telah digunakan untuk mengenalpasti nilai parameter dalam setiap isoterm dengan mengoptimumkan nilai R². Nilai R² yang dihitung adalah 0.91 (LI), 0.69 (FI) dan 0.96 (LF-I). Ruang bercetak, N dan kehomogenan, m telah dihitung bagi MIP dan polimer molekul tidak bercetak (NIP) menggunakan LF-I. Didapati N bagi MIP lebih tinggi iaitu 1250.62 µg/g berbanding NIP 998.35 µg/g. Analisis ini menunjukkan bahawa MIP mempunyai lebih ruang bercetak dan selektif terhadap kurkumin. Seterusnya, pengekstrakan fasa pepejal (SPE) telah dilakukan dengan menggunakan polimer seberat 150 mg. Analisis ini bertujuan untuk mengekstrak kurkumin dan hasil menunjukkan nilai permerolehan semula bagi MIP adalah 43.10 %, lebih tinggi berbanding NIP iaitu 13.46%. Bagi tujuan pengekstrakan kurkumin daripada kunyit, analisis yang sama telah dijalankan dan pemerolehan semula bagi MIP adalah sebanyak 67.76% dan NIP adalah 39.86%. Ini menunjukkan bahawa penghasilan MIP mempunyai potensi yang tinggi bagi tujuan purifikasi kurkumin dengan mengaplikasikan SPE.

ABSTRACT

CHARACTERIZATION OF MOLECULARLY IMPRINTED POLYMER FOR AN EXTRACTION OF CURCUMIN FROM *Curcuma longa* (Turmeric)

A molecularly imprinted polymer (MIP) for selective extraction of curcumin has been synthesized via non-covalent approach by using curcumin as a template. Polymerization was prepared using 2 (two) functional monomers namely methacrylic acid (MAA) and acrylamide (AM) together with 3 (three) different porogens namely chloroform (CHCl₃), tetrahydrofuran (THF) and acetonitrile (MeCN). Porosity and surface area analysis revealed that the polymer prepared using THF as porogen has the highest average pore diameter size i.e. 618.43 nm. Batch binding analysis revealed that the largest imprinting factor was attained by the polymer prepared using MAA and THF as functional monomer and porogen respectively. Further characterization was carried out using 3 (three) isotherm models namely Langmuir (LI), Freundlich (FI) and Langmuir-Freundlich (LF-I) isotherm. The unknown parameters in each isotherm were calculated by using Solver function in Microsoft Excel and were optimized for R^2 value. The calculated R^2 values were found to be (0.91), (0.69) and (0.96) for LI, FI and LFI respectively.. Hence, LFI was further used to calculate the binding sites (N) and homogeneity (m) of both the MIP and NIP (non-imprinted polymer). The result showed that MIP1 has more Nt (1250.62 $\mu g/g$) as compared to NIP (998.35 $\pi g/g$) suggesting that MIP has more binding sites and selective towards curcumin. A 150 mg of polymer mass was packed into SPE (solid phase extraction) cartridge and subsequently used to extract curcumin from raw turmeric extract. The recoveries were 43.10% for MIP as compared to 13.46% for NIP. This suggested that the MIP cartridge exhibited significant selectivity toward curcumin, with recoveries 67.76% and 39.86% for NIP, indicating that the synthesized MIP has the potential for curcumin purification through SPE.

CHAPTER 1

INTRODUCTION

1.1 Overview

In general agreement, bioactive compounds are essential and non-essential compound (e.g. vitamins or polyphenol) that derived naturally, are part of food chain and could give an effect on human health (Biesalski et al., 2009). These compounds may exert their effect by acting as antioxidants, activating liver detoxification enzymes, blocking the activity of bacterial or viral toxins, inhibiting cholesterol absorption, decreasing platelet aggregation, or destroying harmful gastrointestinal bacteria (Pennington, 2002). Nowadays, consumers are much aware in nutrition value and food fortification for healthcare. The abundance of traditional medicines and supplements proved that the market has high demands on natural products.

Because of the high demand, it should have a scientific way in handling and preparing bioactive compounds before it could be used for alternative products. The process of handling natural products is normally tedious and time consuming. Currently, many researches are conducted for final separation and detection steps, while less attention are paid to the development of faster, more selective cleaned up method (Möller, 2006). Sample cleaned up is very important for samples with complex matrices, such as biological fluids, food extracts and wastewater. This is because complex matrices usually contained various compounds that might suppress the targeted analytes signal. Before injection into a liquid chromatography system or other analytical equipments, the sample matrix must be separated from the analytes of interest. Otherwise, contaminants could disturb separation and detection or even damage the analytical column. The cleaned up procedure also could enriched the analytes concentration which will improve the sensitivity.

Cleaned up method depends on types of matrices and type of targeted compound (volatile or non-volatile). Commonly, for non-volatile compound, an extraction procedure using solid-phase extraction (SPE) could be carried out. A combination of SPE with selective sorbent is a great system which could fasten up the procedure. Selective sorbent is produced using molecularly imprinted polymer (MIP) which is build based on the targeted compound. In this study, the preparation of MIP for curcumin is developed and implemented in SPE.

1.2 Molecularly imprinted polymer (MIP) as selective sorbent

Recently MIP has been broadly used as a selective sorbent or as a stationary phase for the extraction of various drugs, natural substances or traditional medicinal compounds (Rashid, Briggs, Hay, & Stevenson, 1997; Wensheng & Gupta, 2004; Yinzhe & Kyung, 2006). This technique is an adaptation from the role of antibodies antigents concept and was developed as synthetic receptors which are suitable for separation technique. This was based on tailored selectivities and affinities. In general, an objective substrate is employed as a template molecule that binds with functional monomer during the copolymerization of the functional monomer and the cross linking agent. Movements of molecules are frozen in polymeric structures so that they are immobilized in a desired fashion (Komiyama, Takeuchi, Mukawa, & Asanuma, 2003b). Removal of the template during washing step will leave behind cavities on the polymer matrix with the shape of the selected template. The arrangement of functional groups will result in complementary binding sites to the original template. The MIP can be prepared using covalent and non-covalent method and however the latter approach is more widely used because of its simplicity (Wang, Hong, & Row, 2004). This technique has been introduced since 1970s and developing tremendously until present. Some of the advantages of this technique are: 1) the preparation is straightforward, 2) the MIP itself is stable in terms of mechanically and thermally and 3) the MIP is reusable.

1.3 Solid-phase extraction (SPE)

Solid-phase extraction (SPE) is one of the applications that use MIP as a selective sorbent. Typically in SPE, solutes are extracted from a liquid phase into the solid phase which are readily packed with porous particles of silica with a bonded organic phase or of an organic polymer such as cross linked polystyrene (Fritz, 1999). Conventional SPE has some limitation especially in terms of specificity. With the development of MIP, the empty SPE cartridge can be packed with optimized MIP. The selective cartridge is suitable for preconcentration and sample cleaned up before analyzing using chromatographic technique. This would be a good application for specific analysis. Once MIP is optimized, it will be packed in empty SPE cartridge, followed by optimization of SPE procedures which involves conditioning the cartridge, loading samples, washing the interferences and finally eluting the desired template. This technique also knows as molecularly imprinted solid-phase extraction (MISPE) which was firstly done to clean up pentamidine from urine (Börje, 1994). The MISPE procedures are similar to conventional SPE procedures (Caro, Marcé, Borrull, Cormack, & Sherrington, 2006). Thus, it has to be optimized to achieve maximum template recovery. The choices of solvent during MISPE procedure is crucial and need to be done carefully so that the binding interaction occurred during sample loading will not diminished and finally affected the selectiveness.

1.4 Curcumin as phytochemicals

Curcumin derived from turmeric is categorized as low molecular weight of polyphenol which is one the phytochemicals that obtained naturally in plants. Phytochemicals derived from dietary components has gained much attention to threat human diseases especially cardiovascular diseases and cancer. Curcumin has gained vast acknowledgements as an antioxidant in health and medicinal fields apart from the main role as the food colorant and preservatives (Aggarwal, Surh, & Shishir, 2007; Basile et al., 2009; Gopinath et al., 2004; Hailong & Qingrong, 2010; Manikandan, Sumitra, Gayathri, & Lonchin, 2006; Motterlini, Foresti, Bassi, & Green, 2000).

1.5 Research approach

The main objectives of this study are divided into two sections; the development studies of MIP and its application on SPE technique. The fundamental studies of MIP are important in order to produce the most effective MIP towards curcumin. A good MIP resulted with high imprinting factor which is lead to high selectivity towards target molecule. The study begins by selecting suitable components for polymerization which are functional monomer and porogen. An effective MIP is the outcome from good combination of template - functional monomer porogen. Once an effective MIP was selected, it was than implemented in SPE. Solid-phase extraction involves four basic procedures which are conditioning, loading, washing and eluting. To achieve maximum recovery of template during SPE, it was optimized using different conditions of loading, washing, eluting solvent and mass polymer. The molecularly imprinted solid-phase extraction (MISPE) was used to extract curcumin as the bioactive compound from turmeric. Characterizations were done using analytical equipments and supported with binding isotherms.

1.6 Specific objectives

The objectives of this study are as follows:

- To develop MIP that is selective towards curcumin
- To characterize the curcumin-imprinted polymer, particularly on functional monomer and porogen
- To apply the characterized MIP for extraction of curcumin using MISPE scheme

6

CHAPTER 2

LITERATURE REVIEW

2.1 History of molecular imprinting

The first work on molecular imprinting was published in 1931 (Polyakov, 1931) on silica surfaces and continuously developed mainly on organic polymers. The development of silica imprinted remained silence after steady publications for 15 years. The main limitation during this period that it must used a water soluble template which must be fairly stable in acid. The new period of intensive development of molecular imprinted polymers was started in 1972 (Klotz & Takagishi, 1972; K. G. Wulff & Sarhan, 1972). They independently reported preparation of organic polymer with predetermined ligand selectivities. Briefly, the method is known as "controlled distance method", which involved copolymerization between D-glyceric-(*p*-vinylanilide)-2,3-O-*p*-vinylphenylboronate and divinylbenzene. Research and development related to MIP are kept on growing continuously until today with more than 4000 paper published ("MIP Database," 2010). The wide interests of scientific community to MIP technology are reflected with the number of publications as shown in Figure 2.1.