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DAMPING PROPERTIES OF A357 ALLOYS AND  

A357-STAINLESS STEEL COMPOSITES FABRICATED  
UNDER DIFFERENT CONDITIONS 

 
 
 

ABSTRACT 
 
 
The lab scale gravity casting technique was used to produce alloy specimens of 
nonsuperheated A357 alloy, superheated A357 alloy and composite specimens of 
superheated A357-0.5 and 1.0 wt.% stainless steel composites. The primary cast ingot 
A357 alloy was melted in graphite crucible before pouring into the stainless steel 
mould at 700ºC for all specimens. Meanwhile, prior to pouring, the preform of 304 
stainless steel wires were aligned in stainless steel mould to produce superheated 
A357-0.5 and 1.0 wt.% stainless steel composites respectively. The main objective of 
this research is to study the effect of superheating on the microstructures and dynamic 
mechanical properties, to identify the phases that presents in all the specimens and 
also to identify the appropriate damping mechanisms in all specimens at lower and 
elevated temperatures. The superheating had refined the eutectic Si particles and 
changed the shapes of α-Al dendrites in superheated A357 alloys. The superheating 
also changed the shapes of π-Al8FeMg3Si6 intermetallic phase and Mg2Si phase in 
superheated A357 alloys. Superheated A357-0.5 wt.% stainless steel composite 
showed poor bonding and less intensified of coarser eutectic Si particles around the 
matrix-reinforcement interface. Superheated A357-1.0 wt.% stainless steel composite 
showed good bonding and more intensified of finer eutectic Si particles around the 
matrix-reinforcement interface. However, no interface reaction layer was observed at 
the matrix-reinforcement interface of the composite specimens. Dynamic mechanical 
properties such as storage modulus, loss modulus and damping capacity were 
investigated by dynamic mechanical analyzer (DMA). Superheated A357-1.0 wt.% 
stainless steel composite showed the highest storage modulus of 66.30 GPa at 50ºC. 
Superheated A357-0.5 wt.% stainless steel composite showed the highest loss modulus 
of 4.10 GPa at 380ºC. Superheated A357 alloys showed the highest damping capacity 
of 0.0842 GPa at 380ºC. Dislocation damping was the mechanism at lower 
temperatures range (50 to 280ºC) for the alloys and the composites. Meanwhile, grain 
boundary damping and interfacial damping were the mechanisms at elevated 
temperatures range (281 to 380ºC) for the composite and only grain boundary 
damping was the mechanism at elevated temperature range for the alloys. Differential 
scanning calorimetry (DSC) study at lower temperatures range (100 to 450ºC) of 
solution treated alloys and composite specimens showed the presence of two 
exothermic reactions (precipitation of θ″ and θ′) and an endothermic reaction 
(dissolution of θ″) while at elevated temperatures range (530 to 630ºC) of solution 
treated alloys and composite specimens showed three endothermic reactions (Al 
dendrites, Al + Si and Al + Si + Mg2Si + π-Al8FeMg3Si6).  
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
1.1 Background 
 

Dynamic mechanical properties which represented by dynamic moduli 

(storage modulus and loss modulus) and damping capacity remain the prime 

importance in many engineering fields particularly which exposed to the dynamic 

applications. Knowledge of damping in a dynamic behaviour is essential in utilisation, 

analysis and testing of the components. 

 The damping capacity is the capacity of a material to convert mechanical 

energy of vibrations into heat that is dissipated in the materials (Rohatgi et al., 1994). 

When a high damping materials is effectively utilised in a structure exposed to a 

cyclic loading, this property allows undesirable noise and vibration to be passively 

attenuated and remove to the surroundings as heat (Perez et al, 1993). The damping 

mechanism of materials is also become practical significant as the degree of damping 

affects the mechanism under cyclic loading.   

 In metals and alloys, damping capacity can be improved by the addition of the 

reinforcements. Aluminium alloys have low damping capacity values in the range of 

0.40 to 0.70 x 10-3 compared to other alloys such as steel (1.60 to 4.80 x 10-3) and 
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magnesium (39.80 to 79.60 x 10-3) (Zhang et al. 1993a). Previously, the damping 

capacity of Al-4 wt.% Cu alloys progressively increases with increasing amounts of 

mica particles dispersed in the matrix reported by Deonath et al. (1981). According to 

finding by Perez et al. (1993), the damping capacity of the Al 6061 alloy was 

increased with increasing volume fraction of graphite particles. The latest 

investigation was found by Wanga et al. (2009) on the improvement of damping 

capacity in Li5La3Ta2O12 particulates reinforced aluminum matrix composites 

(AMCs).  

The measurement of damping capacity in the discontinuous particles 

reinforced AMCs were widely done as previously mentioned. However, very limited 

measurement of damping capacity was carried out in continuous fibre reinforced 

aluminium composites. One of the measurements of damping capacity in the 

continuous fibre reinforced aluminium composites was reported by Wolfenden and 

Wolla (1989) on the alumina and tungsten continuous fibre reinforced aluminium 

composites.       

Al–Si alloys as important light metals are widely used in automotive, 

transportation, construction and leisure industry due to their excellent wear resistance, 

pressure tightness, fluidity, and shrinkage (Ejiofor & Reddy, 1997). It was reported 

that Al–Si alloys had relative low damping capacity (Zhang et. al, 1993b), which 

largely limited their application in both high damping capacity and mechanical 

properties needed. However, various methods to improve damping capacity were 

accompanied by decreasing in strength (Perez et al., 1993; Zhang et al., 1994; Wei et 

al., 2002). Therefore, further studies are still of necessity for Al–Si alloys to achieve 

significant improvement in both damping capacity and mechanical properties. 
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The damping capacity of the alloys can be improved by microstructural 

modification. Improvement of damping capacity was achieved by grain refinement in 

A356 alloy with grain refiner (Zhang et al., 2005; Zhang et al., 2008) and ultrafine-

grained in pure aluminium L2 by combination of equal channel angular pressing 

(ECAP) and annealing process (Zhang et al., 2006). Improvement of damping 

capacity also was achieved by formation of GP zone with the application of age 

hardening on Al-7Si-0.3Mg alloy (Lee, 2005). 

  

1.2 Problem Statements 
 

In this study, several scientific curiosities have led to the problem statements 

as follows:   

1. In general, aluminium alloys are weak in strength, modulus and 

hardness compared to steel (Zhang et al., 2005). So, it is necessary to 

develop new aluminium matrix composite to overcome these 

problems.   

2. Very few investigations of damping capacity in continuous aluminium 

matrix composites (AMCs) were reported (Wolfenden and Wolla, 

1989). However, none of the research was done on the measurement of 

damping capacity and damping mechanisms in the continuous wire 

reinforced AMCs particularly on the application of the dynamic force 

in the parallel direction to the continuous reinforcement.    

3. Microstructure plays an important role in determining the resulted 

damping capacity (Srikanth et al., 2004). Different types of MMCs 

either produced by powder metallurgy or casting technique will 
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influence the damping capacity. So, it is necessary to control the 

microstructure to produce the optimum damping capacity. 

 

1.3 Research Objectives 
 

In the present work, several research objectives are proposed according to the 

problems in the areas of MMCs: 

1. To analyse the resulted microstructure that took place in 

nonsuperheated A357 alloy, superheated A357 alloy and composite 

specimens of superheated A357-0.5 and 1.0 wt.% stainless steel 

composites. 

2. To study and analyse the storage modulus, loss modulus and damping 

capacity in nonsuperheated A357 alloy, superheated A357 alloy and 

composite specimens of superheated A357-0.5 and 1.0 wt.% stainless 

steel composites. 

3. To identify the appropriate damping mechanisms in the alloys and 

composites from 50º to 380ºC. 

4. To correlate the microstructure and damping properties in 

nonsuperheated A357 alloy, superheated A357 alloy and composite 

specimens of superheated A357-0.5 and 1.0 wt.% stainless steel 

composites. 

5. To identify the phases that present in alloys and composites by using 

differential scanning calorimetry (DSC). 
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