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ABSTRACT
This paper proposes a generalised price-scoring model derived from behavioural features of prospect theory for use in a
tender evaluation program. It has the potential to overcome the limitations of existing price models by allowing the within-
price attribute score variations to be adjusted by a preference factor. It improves selectivity and incorporates a preference
function that emphasises the evaluator and decision maker’s preference in the lowest price by allowing a price-scoring curve
to be derived from the skewness of the distribution of tender prices and the tender participation rate. It identifies prices that
exceed the project budget and penalises them. Statistical data from a survey of tender prices was used to specify the model for
practical use. Comparison between generic classes of models using price difference and price ratio functions as price gain
measures is made to illustrate the model’s general applicability. With the choices made available in this generalised price-
scoring model, it is possible to  compare the various methods of tender evaluation by computer simulation.
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INTRODUCTION
The objective of tender price scoring is to assign the right
values to tender prices within a project budget and to score
them so that a fair evaluation that reflects the judgment and
preference of the evaluator and decision maker, can be made.
The rule of tender evaluation is to award a higher score to a
lower price tender because a lower price has a higher value to
the evaluator and decision maker. In manual evaluation
methods, the price values are assigned by human judgment on
an ordinal scale which implies a qualitative price-value
relationship. If software decision-support tools are used in
integrated tender evaluation of price and non-price attributes,
price must be evaluated by a quantitative value function that
converts price in monetary unit to a score on an objective
numerical scale. How prices are evaluated affects the final
tender ranking.

A survey of literature indicated that research on price-value
relationship for the purpose of tender evaluation is scarce. One
simple quantitative value function that has been used by
Karsak [1] for the evaluation of flexible manufacturing
systems is a price inverse model for scoring a cost-related
attribute. The score synonymous with value, is derived from
the price inverse, χ

i
= xi

-1 where xi is the price of the ith tender.
The model’s weakness is its tendency towards indifference and
not having the means to assign a degree of preference for low
prices. Thus, there is no flexibility for it to fully express the
judgment of the evaluator and decision maker through a
preference function. 

A wider search in the subject of judgment and decision
making [7,8,9,10] revealed the existence of value functions in
prospect theory proposed by Tversky and Kahneman [2,3]
since 1979. The theory replaces the notion of utility with value
which is defined in terms of gains and losses from a reference
point. They suggested that the value function defined over
monetary gains is χ

i
= xi

p for xi above a reference price(0) and
over losses is – λ(–xi )

p
for xi below the reference price.

Determined from experimental data, p is 0.88 and λ is 2.25,

indicating diminishing marginal value and asymmetry between
gains and losses. The application of the proposed value
function has received attention recently [4,7,8,9] in a number
of situations in which the norms and characteristics of decision
makers are modelled. 

Variations in a tender’s overall value are contributed by the
within-attribute variations and the between-attribute variations.
A value function deals only with the within-price attribute
variations while the weighting functions of the tender
evaluation procedures in [5,6] provide the between-attribute
variations. This paper presents a generalised price-scoring
model that determines the within-price attribute variations
from the prices of competing tenders. Because all judgments
and decisions are context-dependent [8], the credibility of a
generalised price-scoring model rests on its ability to capture
an evaluator or decision maker’s tendency for dominance or
non-dominance and on its ability to express mathematically the
decision maker’s judgment that is translated into a continuous
continuum of strong to weak emphasis of tender price. In a
realistic model, the behavioural features in prospect theory
have to combine with the cost objective to achieve a wide
scope of application for situations in which the decision
maker’s behaviour varies. Prospect theory is helpful up to this
point after which the preference factor is dependent on
behaviour that has to be approximated by information in a
tender. 

To achieve this objective, it borrows from prospect theory
some behavioural features that are not found in multi-attribute
utility theory and applies it to tender price judgment:
• Evaluators and decision makers are more sensitive to cost

overrun than cost saving in the sense that they will reject
tenders that have prices exceeding the project budget. 

• If there are sufficient tender proposals to select from without
cost overrun, they will view the tender’s lowest price as
indicative of the fair market value and the average price plus
margin as the budget’s upper bound. 
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• If the tender prices are significantly less than the project
budget, they become strongly gain-seeking so as to accrue
larger cost savings and to compensate for the original over-
estimate.  

• If the tender prices are close to but below the project budget,
their gain-seeking tendency is weaker because with lesser
cost saving, attention is shifted to the non-price attributes of
the tender to accrue higher non-price gains.

This paper is organised as follows. First, a generalised
price-scoring function of a similar form as the value function
of prospect theory is proposed. Next, the project budget acting
as the reference price is defined and its implications discussed.
A preference function is developed for strong to weak gain-
seeking, the strength of which is determined by the tender price
coefficient of skewness and tender participation rate. A survey
of tender prices elicits the two statistics which together with the
evaluator’s preference limits, are used to determine the
constants of two generic classes of models. Within each
generic class, comparison between price difference and price
ratio functions as gain measures is made to illustrate the
model’s general applicability. Finally, appropriate applications
of the two generic classes are suggested.

PRICE VALUE FUNCTIONS
In general, the mathematical function of a price-scoring

model that captures the essence of how a score, A relates to a
price gain variable, X must have the following properties.

(i) A monotonically increases with X

(ii) 0 ≤ A ≤ 1 for 0 ≤ X ≤ 1

(iii) dA
≥ 0 for 0 ≤ X ≤ 1dX

From prospect theory [2,3], the value/score, Ai derived from
the price gain Xi , of the ith tender price out of m tender prices is
suggested below for two generic classes of models. 

Un-normalised class: Ai = Xi

p

(1a)

Normalised class:  Ai = (1b)

where generally - ∞ < p < ∞. Equation 1b also ensures that
= 1 as a result of normalisation. When p is negative, a

price closer to the maximum price will result in a higher score
because the negative root of a small price gain produces a score
close to unity. Because this is contrary to the tender evaluation
rule of low price-high score, the price-scoring model must not
consider values of p that are negative. With this exclusion, the
preceding properties are still satisfied but additional properties
are required to define the variable, p for various behavioural
states as follows.

(i) A(X) is constant for p = 0

(ii) A(X) is proportional to X for p = 1

(iii) A(X ≠ 1) = 0 for p = ∞

(iv) For Equation 1a, 0 ≤ p ≤ 1

The evaluator or decision maker’s behaviour can be
approximated by the preference factor, p which defines the
gain-seeking tendency in the shape of the price-scoring curve.
With Equations 1a and 1b, there is no effect caused by price
gain on the scores when p = 0 i.e. they all have the same unity
score for the un-normalised class and for the normalised 
class. When p increases from 0, the model starts to exhibit a
lower price-higher score characteristic, initially still having the
tendency to be price indifferent. When p = 1, it scores linearly
with price gain and is not adjusted by preference (judgment).
With Equation 1b, when p = ∞ , the lowest price attains the
maximum score of 1 unit  while the rest of the prices are scored
zero irrespective of their gain value. Thus, as p moves from 0
to ∞, the price-scoring characteristic moves from one that is
insensitive to price gain, hence eliminating price competition,
to one that exhibits the strongest preference for the lowest
price, hence creating the stiffest competition that results in only
one possible contender. In other words, the price-scoring
model inherently allows for a range of effects to be
accommodated, namely indifference, linear and non-linear
dependence on price gain through the specification of p. 

THE PROJECT BUDGET AS A REFERENCE
PRICE

Before tenders are called, a value of the project cost x̂ is
estimated. Based on this value, a project budget is given taking
into account an assigned contingency cost which is provided to
mitigate situations of cost overrun caused by residual project
risk. If the contingency cost allocated is c, the project budget,
xB is x̂ + c. When tender submissions are received, their prices
are compared with either the project cost estimate or the budget
allocation. Evaluators prefer not to risk cost overrun and will
be reluctant to recommend award of a contract whose price
exceeds the project cost estimate or the budget. As a means of
control, a price-scoring model must assign the lowest price
score, usually zero, to prices exceeding the budget i.e. the value
function for losses is set to zero for exclusion purpose and is
restricted to coding of price gains. The budget is a reference
price on an objective scale and has the same meaning as that of
prospect theory discussed in [2,3,4,7].

If cost overrun is limited by xB, then the price gain has a
range xB - xmin . If the tender prices are ordered in ascending
value in the sequence, x(1), x(2), .., x(j),.., x(m-1), x(m), then xmin = x(1).
Any price, x(q) that exceeds xB should either be assigned an
evaluation-adjusted value equal to xB or should be
automatically excluded from the evaluation. If x(1) exceeds xB,
it will be the only price allowed to participate in the evaluation
with gain equal to zero. This requirement ensures that in the
event that all tender prices exceed the budget value, the lowest
price tender will be the only alternative worthy of any
consideration as far as tender price evaluation is concerned. By
accurate estimation, an under-budget situation can be avoided
most of the time. 

PRICE-SCORING CURVES
The exponent, p in Equations 1a and 1b determines the

shape of the price-scoring curve. Strong gain-seeking means a

1––m

Xi

p

_______

Xi

pm

∑
i=1

m

∑Ai

i=1
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high preference (p > 1) for low price. In zero (neutral)
preference cases (p = 1), it would exhibit a straight line
obtained by joining the lowest price score with the score at xB
over the price difference range, xB - xmin. Weak gain-seeking
means a tendency to de-emphasise price preference (0 < p < 1).
At the limit when p = 0, all prices are treated equally and the
scores are impartial to price difference.

To illustrate the price-scoring curve, the highest score, Amax

from Equation 1b is given by 

Amax = A(1) =         =    (2)

where the normalised price is for simplicity, expressed as
Pi = 1- Xi .

If the highest score A(1), is set to unity, A(1) is expressed as
follows: 

(3)

A continuous plot of A(i) against Pi is shown in Figure 1 for
various value of p > 0 to illustrate the shape of the price-scoring
curves. Using the curves, the evaluator and decision maker can
selected the degree of preference to match their judgment. 

DISTRIBUTION OF PRICES
Information about the tender can be extracted from the price

distribution statistics. In an ideally competitive environment,
the coefficient of variation and the variance are indicative of the
degree of dissimilarity of the pricing characteristics of the
tenderers. Price skew is an asymmetry arising out of either
legitimate reasons or collusion [11,12]. It is not the purpose here
to determine its cause but to use it to determine preference. The
existence of a low price located to a distant left of a central
bunch of prices (Figure 2a) gives rise to left asymmetry and a
negative coefficient of skewness. If the prices are ideally
symmetrical about their mean (Figure 2b), then the coefficient
of skewness is zero. The existence of a high price located to the
distant right of a central bunch of prices (Figure 2c) gives rise
to a right asymmetry and a positive coefficient of skewness.

The coefficient of skewness, υ is proposed as a measure of
the degree of gain-seeking. It qualifies by having the following
properties.
(i) Its magnitude monotonically increases with skew
(ii) For a positive (right) asymmetry, it is positive and it must

represent a strong gain-seeking characteristic that favours
the lowest price from the bunch of prices by making the
scores reduce very quickly to zero for exceptional prices
that are located much higher than the lowest price.

(iii) For symmetry of prices, it is zero and it must not
contribute to any preference by being neutral.

(iv) For a negative (left) asymmetry, it is negative and it must
represent a weak gain-seeking characteristic that still
favours the lowest price but the scores of the bunch of
prices are not reduced too quickly.

The lowest price is distant from the central bunch of prices
because the pricing of the lowest tender is either made under a
different condition or with a different strategy from those of the
central bunch. The lowest tenderer may have a legitimate
advantage over the rest because of technology, available
capacity, resources and location which can be evaluated
outside the price domain as in [4,5]. Or in an attempt to win the
contract, the lowest price tenderer may resort to higher risk-
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Figure 1: Normalised score against normalised relative price 

Figure 2: Illustration of skewness in frequency distribution
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taking and cutting profit margin, a strategy that the others may
not be willing to adopt. If the determination of the project
budget is accurately done, such extreme price deviation from
the cost estimate must signal the need for extra caution during
the evaluation and to uncover the hidden project risks. While
giving the highest score, the evaluator is risk-averse and must
prudently limit the emphasis of the lowest price. A similar
effect may also be created from strategies that defeat fair
competition by many forms of cartel collusion. Non-competing
cartel prices are increased and the cartel-promoted tenderer’s
price is raised to just below the next-lowest price [12,13] as
illustrated in the comparison between Figures 2a and 2b. If
such strategies are revealed in the skew, they are penalised
through exclusion by the budget limit as well as by price de-
emphasis. When automatic action could not be taken
effectively by the software program, pre-assignment of p (<1)
is the way to counter this problem. 

If behaviour is expressed in the preference factor p, the
distribution’s coefficient of skewness υ, is a behaviour variable
that induces a preference such that the relation between p and
υ meets the following:

(i) p > 0  for  - ∞ <  υ < ∞
(ii) p = ∞ if  υ → ∞
(iii) p = 1  if  υ → 0
(iv) p = 0  if  υ → - ∞

A possible general polynomial expression that satisfies
these properties is the skewness factor, k1 given as follows:

(4)

where α2i-1
’s are positive constants to be determined for L1

terms. υ is zero if the number of tenders evaluated is less 
than 3.

TENDER PARTICIPATION RATE
If there are sufficient tender proposals to select from

without incurring cost overrun, the price-scoring model should
allow for increase in its price selectivity under a situation of
high tender participation rate. When υ is very negative, p is
near zero. The scores tend to equalise and lose their
discriminative ability. In Equation 1b, high tender participation
rate decreases the absolute scores by the effect of a larger
denominator. The consequence is that when the price scores are
brought into the aggregation process with other non-price
factors, they become less contributory from their low score
values and the lack of discrimination. This effect is
counteracted by increasing the value of p with tender
participation rate.  One way is to include in p, a separate tender
participation factor, k2 which is a function of the number of
tenderers, m being evaluated. It should have p increasing
monotonically with m i.e.       > 0 for m > 0.

It is suggested that k2 adopts a general positive polynomial
function of m in the form 

(5)

where β0
is a constant and β j

’s are positive constants to be

determined for L2 terms. When m = 1, there is no competition

and k2 can be set to zero thus, β0
= -∑β j .

GENERAL PREFERENCE FUNCTION
How k1 and k2 should be combined to obtain p does not

have a unique approach. It must be application dependent and
satisfy practical and intuitive requirements. One approach is to
add the effects of distribution skew, k1 and the effects of tender
participation rate, k2 i.e. k1 + k2. An additive effect has
advantage over the multiplicative one ( k1 • k2 ) because it
would not nullify the effect of tender participation rate if the
skewness were zero. However, addition alone cannot satisfy all
the properties of p. A non-nullifying and property-complying
expression for p as a function of k1 and k2 is suggested as
follows:

p = exp(k1 + k2) (6)

This expression restricts the value of p to > 0 and thus,
satisfies the required properties of p. k1 contributes to p by
ensuring the possibility of specifying a strong preference for
low price with positive skew or a de-emphasis of preference for
low price with negative skew. It ensures that when υ = 0, zero
(neutral) preference results from it. The tender participation
rate, m contributes positively to p through k2. Exponentiation
ensures a positive p all the time and it amplifies the combined
effects, thus making the influence of p stronger. Flexibility is
given such that without the aid of these two factors, the
evaluator and decision maker can still assign the value of p
independently.

At this point, it is seen that the price-scoring model
combines the ideas of price gain measure, X and of the degree
of preference p, which is a function of the skewness of the price
distribution and the number of tenders evaluated, to calculate
the price scores, either un-normalised or normalised
respectively.

ANALYSIS OF TENDER PRICES
If the purpose of tender evaluation is to select an optimum

tender, then the information that reveal price relativities should
be put into good use for decision making. A survey was
conducted to gather data on tender participation rate and tender
prices with the aim of obtaining statistics on tender
participation rate and on tender coefficients of variation and
skewness. The range of values of m and υ can then be
established for use in the price-scoring model. From a total of
75 data sets from past tender exercises, the coefficients of
variation (deviation/mean) and skewness for each data set were
calculated. From their distributions, the coefficients’ means,
medians and deviations were obtained from statistical analysis
and are summarised in Table 1. The coefficient of skewness is
expected to vary from negative values to positive values while
the coefficient of variation is always positive.

95% of the tenders has a participation rate below 10 and the
median is 4. The price coefficient of variation’s mean and
median are close to each other at 0.1274 and 0.1221
respectively while its deviation is small at 0.0752. The survey
data are indeed from tenderers who shared similar localised

k1 =∑α2i-1υ2i-1
L1

i =1

dp––
dm

k2 = β0 +∑β j m j
L2

j =1

L2

j =1
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characteristics [13] and quoted prices with small deviations
from the mean price. 95% of the coefficients of variation is
below 0.2850. A budget up to 1.285 times the project cost
estimate will capture most tender prices for evaluation. The
mean of the coefficient of skewness, µυ is 0.2828 and its
deviation, συ is larger at 0.9764. 90% of its variations lies
within the range of –1.5570 and 1.6301 with a median of
0.4682. The large συ is an indication of the sensitivity of
skewness to extreme values and υ can be suitably employed to
vary the preference over a wide range. 

SPECIFIC PREFERENCE FUNCTION
A specific preference function for the price-scoring model

adopts the first order functions of k1 = αυ from Equation 4 and
of k2 = β(m-1) from Equation 5, where α and β are the positive
constants in the expression of p as follows:

Thus,   p = exp[αυ + β(m-1)] (7a)

or        q = ln p = αυ + β(m-1) (7b)

The price-scoring model is to work within the specified
limits determined by:

• The maximum tender participation rate, mmax and the
minimum, which is 1.

• The upper and lower percentiles of the coefficient of
skewness (υmax and υmin) of the tender distribution.

• The upper and lower limits (pmax and pmin) of the preference
factor

The tender participation rate can be estimated from the
number of tender documents collected and thus a maximum
can be set. A minimum of 1 is set to ensure that the effect of
tender participation rate could be felt at 2 onwards according to
Equation 7a.

Equation 7b shows that the variation of the model constants,
α and β are dependent on the logarithm of the preference limits.
They are less sensitive to the variations of p and can
accommodate the fuzziness of subjective judgments without
large changes in value. Figure 1 provides the evaluator and
decision maker a means of specifying the limits by inspection.

Thus, q
max

= ln pmax = αυ
max

+ β(mmax - 1) (8a)
q

min
= ln p

min
= αυ

min
(8b)

Solving for α and β,

(9)

(10a)

If β’ = β(mmax-1), 

then,  β’ = (10b)

To ensure that α is positive (> 0), then vmin and qmin must
have the same sign. 

For β ≥ 0,  (qmax υmin – qmin υmax)/ υmin ≥ 0 (11a)

(11b)

p
max

≥ p
min 

κ (11c)

p
min

≥ p
min 

κ (11d)

The choice of p is guided by the intuitive requirement that
the effect of υ should be greater than that of m. 

Thus, α > β’ and   p
max

< p
min

(12)

where λ =             = κ + υmin . 

For a given p
min

, combining Equations 11c and 12 gives
the range of p

max
. 

p
min

< p
max

< p
min

(13a)

Similarly given   p
max

, p
max

> p
min

> p
max

(13b)

From the price survey, υ̂min, υ̂max can be obtained for
specified percentile limits of its distribution. κ can be
calculated. p̂min is specified to calculate α. pmax is then selected
so that β and β’ are kept positive. In this paper, the range of the
skewness coefficient is fixed at  –1.5567 and at 1.6301 to give
κ equals to –1.0472. To cater for at least 95% of tender cases,
mmax is fixed at 11. The corresponding values of α and β’ are
shown in Table 2 for each pair of pmin and pmax. The effect of
tender participation can be nullified (β = 0) by either pmin or pmax

determined from Equations 11c and 11d. For a given pmin, the
evaluator and decision maker can choose the strength of tender
participation rate from the range of values of pmax determined
from Equation 13a. Nullification will not occur if pmax is larger
than the lower extreme value. With 3 parameters fixed, the
preference function p, is determined from pmin and pmax for 
λ = -1.6896 as follows. Given pmin = 0.2,  5.395 < pmax < 15.167
and given pmax = 5.0, 0.3857 > pmin > 0.2151.

1––

Tender Price Tender Price Coefficient Price Coefficient

Coefficients’ Participation of Variation, of Skewness,

Statistics Rate, m σ/µ υ

Mean 4.933 0.1274 0.2828

Median 4 0.1221 0.4682

Deviation 2.124 0.0752 0.9764

5th Percentile 3 0.02637 -1.5570

95th Percentile 9.3 0.2850 1.6301

Table 1: Analysis of tender participation rate and tender prices α =  q min

υmin

q
max

υ
min

- q
min

υ
max

υmin

ln p
ma x ≥

υ
max

= κ
ln p

min
υ

min

1+υmax

υmin

λ

−1

λκ

λ
1––κ
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PRICE GAIN FUNCTIONS
Only price gains are of interest. At this point, the model

excludes the coding of losses which is done in prospect theory. In
an integrated tender evaluation procedure, price gain must be
dimensionless. When price is in monetary unit, it must be evaluated
separately because it is not compatible with other dimensionless
attributes. One property of a price gain function is that for prices, xi

> xj > xk , the price gains derived from these prices must satisfy the
condition Xi < Xj < Xk. Transitivity of price gains must be assured.

The qualitative ordinal scale commonly used cannot be adopted
here because it fails to preserve the numerical information of price.
Value scores must be made on quantitative scales. From
experience, both price difference and price ratio have been use in
tender evaluation. Price difference is a comparison of prices in an
interval scale whereas price ratio represents relative value
comparison in a ratio scale.

PRICE DIFFERENCE MODEL SUB-CLASS
For the price difference model, the price gain variable is a

measure of the distance of a price from an upper price limit and is
expressed as follows.

Xi = (14)    

where xmax is the reference price on the interval scale and xmin is
the lower price limit in the tender and xi is the tender price of the
ith tender alternative. The price gain, 0 ≤ Xi ≤ 1 is a normalised
measure of price difference. It is small if xi is close to the reference
price, xmax and it is largest (unity) when 
xi = xmin. With the project budget xB, the price gain in dimensionless
unit is adjusted to 

Xi = (15a)

such that xmin =  x(1) and if xmin > xB , all Xi’s = 0.

An un-normalised price gain in monetary unit is given by

Xi = xB - x(i) (15b)

This is a straightforward relation that equates price score with
price difference. It is a useful measure for evaluation methods that
compare marginal benefit with price and evaluate price separately
from the other criteria. Although it does not satisfy the condition 0
≤ X ≤ 1, it can be included in the generalised model as a special case
in which the price gain value is equated with the price difference.

Correspondingly from Equation 15a and 15b, the ordered

price gain sequence, X(1), X(2),.., X(j),.., X(m-1), X(m) in descending
price difference, is obtained for calculating their scores, A(i).
Thus, this method is a comparison based on ordered absolute
values with reference to an artificial zero at xB. It also satisfies
the transitivity property. 

PRICE RATIO MODEL SUB-CLASS
If X is allowed to assume other non-linear functions of price,

it is possible to incorporate Xi = χi = x i
-1 , Karsak’s value function,

into the generalised price-scoring model. Although p equals to
unity, its scoring curve is strictly not linear. If xi = xmin+ ∆xi, where
∆xi is a small positive difference of the ith price above the
minimum price, xmin, then the value function is given by

Xi =               ≈ 1- (16)

If normalisation is done, the value function represents a ratio
as follows:

Xi =               ≈ 1- (17)    

Both Equations 16 and 17, when substituted into Equation 1b
produce identical effects. Both differ from the price difference
function. The generalised model accepts both these two price ratio
functions but Equation 16 can only be used in the normalised class
of models because on its own it is not dimensionless. Cost control
is implemented by excluding prices that exceed xB from
evaluation. The largest price does not necessarily have a low value
because Equations 16 and 17 work in an ordered ratio scale with
natural zero. Thus, a restriction to good discrimination is imposed.
From the price survey, the standard deviation of price is small,
making ∆xi of Equations 16 and 17 small relative to xmin. Xi is thus
closer to unity than to zero. These two price gain functions satisfy
the transitivity property but not the referencing property required
in prospect theory. They represent a specific sub-class that works
on ratio comparison.

COMPARISON BETWEEN PRICE
DIFFERENCE AND PRICE RATIO MODELS

Discrimination and cost control are the bases of comparison
between the two model sub-classes. One set of tender prices for
low-price bunching and one set for high-price bunching are used to
illustrate the characteristics of the price ratio and price difference
models. The two tender sets have the same minimum and
maximum prices. Their statistics are tabulated in Tables 3 and 4 for
both tenders. The higher price tender naturally has the higher mean
price. When the large extreme prices are eliminated by cost control,
the mean prices are reduced slightly but they remain relatively
robust enough to continue to indicate the market norm. The
behaviours of their standard deviations and coefficient of skewness
are less predictable because they are dependent on the price
distribution after cost control action. A more reliable indication of
the direction of change is seen in the reductions in the coefficients
of variation after cost control. The tender with low-price bunching
has coefficient of skewness of 1.721 for 8 prices and decreases to
1.324 for 7 prices after cost control. The corresponding values of p
are 5.169 and 3.573 respectively. For the set with high-price
bunching the coefficient of skewness is –1.170 for 8 prices and
increases to –1.274 for 7 prices after cost control. The skew has

xmax - xi–––––––xmax - xmin

xB - x(i)
––––––––––––xB - xmin

1–––––––
xmin + ∆xi

1–––xmin

∆xi–––xmin

xmin–––––––
xmin + ∆xi

∆xi–––xmin

Table 2: Values of α and β’ for the preference function

(υ̂max = 1.6301  and υ̂min =  –1.5567)

p
min

p
max

α β’
(m

max
= 11) 

0.3 5.0 0.7733 0.3489

0.25 5.0 0.8904 0.1581

0.2151 5.0 0.9871 0.0000

0.2 7.5 1.0337 0.3300

0.2 5.395 1.0337 0.0000
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increased for high price bunching because the extreme (lowest)
price is not eliminated by cost control in this case. The
corresponding values of p are 0.3942 and 0.3538 respectively.

For a set of tender prices, 3 sets of normalised scores and 2 sets
of un-normalised scores are calculated using a common preference
function, p whose coefficients α and β determined earlier were
adopted. The price scores from these 5 models are shown in Table
5 for low-price bunching and in Table 6 for high-price bunching.
All 5 models show some degree of score bunching corresponding
to price bunching. In Karsak’s model, p equals to 1(α and β equal
to zero) without cost control. Its scores are smaller compared with
those of the price ratio model in the next column. Tables 5 and 6
show that the price ratio models do not convey significant score
differences if the price differences are small when compared to
their absolute values. As illustrated in Table 6, they more
effectively provide information in terms of relative differences but
are particularly weak in discriminating prices when there is high-
price bunching. Comparatively, the price difference models are
more discriminating because they enhance the scores of the low
prices and reduce the scores of the high prices. As a result, they will
tend to strengthen the effect of price when an overall tender
evaluation is made together with the other non-price attributes.

By cost control, the over-priced scores of both the price ratio
and the price difference models are set to zero, effectively
eliminating over-priced tenders from consideration. To a small
extent, cost control increases the normalised scores because the
sum of scores is reduced by the elimination of the over-priced
tender. The weakness of the price ratio model in not being able to
score the budget price to zero is obvious here.

Normalisation makes the sum of scores equals to 1 and the

individual scores less than 1. An un-normalised model enhances all
price scores by making the score of the lowest price equal to 1. The
larger score magnitude in the un-normalised price-scoring model
has a greater ability to create price dominance in the evaluation
because it always starts with a score of 1 irrespective of the number
of tender prices.

PRICE-SCORING MODELS
From the generalised price-scoring model, a number of possible

models for particular applications are derived as shown in Figure 3. 
The un-normalised class using the un-normalised price-difference

function with p = 1 is perhaps the simplest model and has attracted the
widest application, especially in the 2-envelope system of tender
evaluation in which price is separated from the non-price attributes.
This model suits direct price comparison methods. Price difference in
the mind of the evaluator is a straight forward and logical means of
comparing prices in common monetary units. One would expect that
a procedure by price difference is attractive because evaluators
naturally judge and rank on the basis of price difference. By assigning
p = 0.88, it becomes the original value function of prospect theory.

Table 3: Statistics from low-price bunching tender

Tender Prices, Values
RM Million Statistics (Cost-Controlled

(Low-Price Bunching) Values in Brackets)

5.973
Mean 6.079   (5.952)

5.713

5.899
Standard Deviation 0.4119   (0.2201)

6.012

6.386
Coefficient of Variation 0.0678   (0.0370)

5.926

5.758
Coefficient of Skewness 1.721   (1.324)

6.965

Table 4: Statistics from high-price bunching tender

Tender Prices, Values
RM Million Statistics (Cost-Controlled

(Low-Price Bunching) Values in Brackets)

6.673 Mean 6.515  (6.451)

5.713

6.689 Standard Deviation 0.3998   (0.3846)

6.512

6.788 Coefficient of Variation 0.0614   (0.0596)

6.226

6.465 Coefficient of Skewness -1.170   (-1.274)

6.965

Table 5: Comparison among the price ratio models and the 
price difference models in low-price bunching case

Normalised Price Scores
Tender Prices, Karsak’s Price Ratio Model Price Difference Model

RM Million Model (xB = RM6.88million) (xB = RM6.88million)
(α=0, β=0) (α=0.8904, β=0.01581) (α=0.8904, β=0.01581)

5.973 0.1267 0.1398     (0.8530) 0.1100    (0.4063)

5.713 0.1325 0.1639    (1.0000) 0.2708    (1.0000)

5.899 0.1283 0.1462    (0.8918) 0.1456    (0.5378)

6.012 0.1259 0.1366    (0.8334) 0.0940    (0.3473)

6.386 0.1185 0.1101    (0.6717) 0.0126    (0.0464)

5.926 0.1278 0.1438    (0.8774) 0.1318    (0.4867)

5.758 0.1315 0.1594    (0.9724) 0.2353    (0.8689)

6.965 0.1087 0.0000   (0.0000) 0.0000    (0.0000)

Note: Price scores in bracketed italic are un-normalised scores using Equation 1a.

Normalised Price Scores
Tender Prices, Karsak’s Price Ratio Model Price Difference Model

RM Million Model (xB =RM6.88million) (xB =RM6.88million)
(α=0, β=0) (α=0.8904, β=0.01581) (α=0.8904, β=0.01581)

6.673 0.1216 0.1410    (0.9465) 0.1247    (0.5423)

5.713 0.1421 0.1490    (1.0000) 0.2300    (1.0000)

6.689 0.1213 0.1409    (0.9457) 0.1212    (0.5271)

6.512 0.1246 0.1423    (0.9547) 0.1529    (0.6648)

6.788 0.1180 0.1395    (0.9364) 0.0242    (0.1050)

6.226 0.1303 0.1446    (0.9700) 0.1874    (0.8147)

6.465 0.1255 0.1426    (0.9572) 0.1595    (0.6936)

6.965 0.1165 0.0000    (0.0000) 0.0000    (0.0000)

Table 6: Comparison among the price ratio models and the 
price difference models in high-price bunching case

Note: Price scores in bracketed italic are un-normalised scores using Equation 1a.
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The un-normalised class using normalised price gain functions
are suitable for integrated evaluation of both price and other non-
price attributes in a computer program. Because of their larger score
values compared with those of the normalised class, they have price
dominant tendencies. The price-difference function can be adopted
if dominance by a single price is desired. On the other hand, the
price-ratio function will tend to move the scores away from single-
price dominance. When price bunching occurs, collective
dominance exists in the un-normalised function. The normalised
class using normalised price gain functions have different
characteristics compared with those of the un-normalised class of
models. They produce an effect that tends not to emphasise on price
nor discriminate between prices thus, allow the other attributes to
play more influential roles in the evaluation.  Their smaller scores
are controlled by the number of tenders evaluated. The more
tenders, the smaller the scores and the lesser the ability to dominate.  

The choice of any of the above models should be made by
matching their characteristics with the evaluation objective. If the
lowest price is to dominate, then an un-normalised class of price-
difference scoring model is appropriate. If price dominance is not
intended, then a normalised class of price-ratio scoring model is
more effective.  Both the un-normalised and normalised classes that
use a dimensionless price gain function based on either price
difference or price ratio meets the requirement of dimensionless
attribute scores in Thum’s fuzzy tender evaluation model [5].

CONCLUSION
A generalised price-scoring model is developed by

incorporating two price gain functions, one based on price
difference on an interval scale and the other on price ratio on a ratio
scale. It attempts to prevent cost overrun by eliminating over-priced
tenders by comparison with the project budget. The behaviour of
evaluators and decision makers is modelled in the preference factor
which is a function of the tender participation rate and its price
distribution skew. In the presence of unusual influences or when fair
competition is threatened, the model will attempt to counteract the
negative strategies adopted by tenderers, failing which a pre-
assignment option built into the program allows the evaluator to
make judgment outside the model.

The generalised price-scoring model produces two generic price
model classes. The un-normalised class tend to produce price
dominant effects while the normalised class tends to allow non-price
attributes to have more influence in the overall evaluation. These
two classes produce their own price ratio sub-class using a price
gain derived from the ratio of the minimum tender price to a price,
and their price difference sub-class derived from the price gain

measure of a price with reference to the project budget. A survey of
tender prices provides data for estimating the tender participation
rate and the range of variations of the price distribution’s coefficient
of skewness to be used in the preference function. By appropriate
choice of price gain function and of the preference function, 5
particular price-scoring models are derived. Price difference models
are found to be better at discriminating prices than price ratio
models. Price ratio models are more suitable for matching tender
evaluation objectives that do not emphasise price. The combination
of the value functions and the price gain functions with built-in cost
control produces a diverse number of models for specific
applications in a tender evaluation computer program.

Further investigation is required to test them with the non-
price attributes in order to define their application in a tender
evaluation procedure. The generalised price-scoring model hence,
provides a means of studying the existing methods of tender
evaluation by computer simulation. For example, comparisons can
be made between an integrated approach in which price and other
attributes are combined in a 1-stage evaluation procedure, and one
in which price is evaluated after the evaluation of other non-price
attributes is completed in a 2-stage evaluation procedure. ■
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Figure 3: Particular price-scoring models from the generalised model
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