

 9

CHAPTER 3

METHODOLOGY AND DESIGN

3.1 Introduction

In order to create an implemental source code to the FPGA board, a good work

plan is required. The summary of the design flow of this study is summarized in Figure

3.1.

The first thing need to be carried out is to plan the function of the system. This is

including the interfaces of the system and how users are going to use them. This will

later be the manual for end users. It is important that this part covers all the possibilities

that may occur during system’s operation.

Upon completing the function of the system, a thorough design of the source

code can be done. It is written using Verilog in Altera Quatus® II environment. The

flow of the program is using “bottom-top” method.. Having this method will create a

systematic structure of the code, making redesigning for error correction easier.

Compilation and simulation is the following method. It is done using Simulator

tool in Altera Quartus® II. Compilation is where the source code is verified to legally

meet the Verilog-2001 rules, so as the simulation. Any violation of the rules will cause

error in compiling. Important to have clean compiled source code due to proceed to

simulation of the code. For error in simulation, the source code had to be modified until

the desired waveform in the simulation is as wished.

 10

Figure 3.1 Flowchart showing work plan on the study

Following after compilation is testing the source code onto the FPGA board.

This is done by downloading the source code into the FPGA board and running the

downloaded source code as an application.

SYSTEM FUNCTION

PANNING

SOURCE CODE

DESIGN

COMPILATION AND

SIMULATION

RUN ON FPGA BOARD

WORK FLOW

ENVIRONMENT

LEVEL

MICROSOFT OFFICE

WORD 2003

ALTERA QUARTUS® II

R
E
P
E
A

T

R
E
P
E
A

T

 11

3.2 System Design

A user friendly but high level of security system is going to be designed. The

input method is using pushbuttons. There are four pushbuttons available for use on the

Altera FPGA board. Pressing the pushbuttons gives High and Low signal to the system

that creates passkey. The source code will be pre-programmed with the passkey on

which user must enter these passkey to gain access to the car. This passkey however,

cannot be changed by the user directly from the system, to avoid hackers or thief from

modifying the internal system’s code.

The system will initially check the key’s existence. If there is any, the system

will disable itself automatically. Thus, if there is no key, the system will check the status

of the pushbuttons. It waits until the correct passkey inserted by user to open the car’s

door. Else, the system will remain locking the car.

Upon gaining access, after the correct passkey has been inserted, the system will

disable or disarm the internal car alarm. This is because latest car have its own internal

alarm that will trigger itself if the car is opened without key. The system will disable the

function for the while, and enable it again when the door is closed and locked.

Some users may encounter the problem of having to turn on the car’s internal

light manually after opening the door, and they have to search for the light’s switch.

This system will however, automatically open the light after the door is opened. User

will not have to face the hardship to search the light manually, and this feature will

greatly help them at nights and in the darks.

As the system is implemented using FPGA board, the conditions of the system

and the progress of the system will be reported using the seven segment display. This is

useful for the later programmer to monitor the status of the system. They can also be

used to detect the error if there is any, so it will be easier to fix the code. This feature is

however not for end user.

 12

3.2.1 The Altera Quartus® II Software

To design a source code, a compiler and simulator is required. Computer Aided

Design (CAD) made it easy to implement a desired logic circuit by using a

programmable logic device, such as a field-programmable-logic-array (FPGA). Altera

Quartus® II is used for this study due to its simplicity and free license. The compiler

uses the Verilog-2001 rules during compilation. Other than Verilog, this software

supports VHDL too.

Figure 3.2 CAD Design Flow

 13

3.2.2 Source Code

The first line to write is the top-level name of the module. The one used here is

named version_11. Thus, the name of the file must be version_11 too. The ports of the

module are listed here. They are not in accordance of input and output but to make it

easier to read by programmer, it must be in sequence. Below is the top-level declaration

of the system.

module version_11
(man_lock,sw,clk,display1,display2,lock,key,disarm_alarm,light);

 The man_lock port is the manual lock representation of the door’s manual

locking knob which is normally located beside the window pane. When the door is

locked, this knob is closed, which gives a Low signal to the system.

 The sw port is the input pushbuttons for the system. It is four bits, and provides

High signal to the system when idle. The switches are active Low. The clk port is the

heart of the system which is connected to the 25.175MHz crystal on the FPGA board. It

provides clocking for the system which trigger states and data movement enable in it.

 As for programmer, the ports are display1 & display2 provided. They are

connected to the seven segment display on the FPGA board. Low signal is required to

turn the seven segments on. Two seven segments are required, thus, two ports were

declared.

 The lock port is used to represent the lock status. When the system is locked,

the LED will light, indicating the lock status. The same goes to the other ports,

disarm_alarm & light. When the alarm is disarmed, the LED will light, so as the

lighting system.

 Later, the input and output ports were declared. They are as follow.

input clk,key,man_lock;
input [3:0]sw;

 14

output [7:0]display1,display2;
output lock,disarm_alarm,light;

 The square brackets are indicating the length of the port. Since there are fout

pushbuttons, it will be declared as four bits, ranging from zero to three. Note that in

digital world, zero is the starting of every counting number.

 The output ports must be declared as registers. The register size must be equal to

the port’s size at the output ports declaration. The declarations are as follow.

reg lock,disarm_alarm,light;
reg [3:0]state;
reg [2:0]swcount;
reg [7:0]display1,display2;

 In Verilog, some constant can be named and declared as parameter. They are

used to make the programmer use the constants easier by having to only call the name,

instead of its value. Following are declaration of parameter.

parameter zero=8'b00000011,
 one=8'b10011111,
 two=8'b00100101,
 three=8'b00001101,
 four=8'b10011001,
 five=8'b01001001,
 six=8'b01000001,
 seven=8'b00011111,
 eight=8'b00000001,
 nine=8'b00001001;

 For the parameter shown above, signal zero (Low) is used to light up the seven

segments. Following is the diagram of the seven segment used and each segment’s

labeling. The labeling a is at the Most Significant Bit (MSB) of the binary assignments.

Figure 3.3 Seven Segments Labeling

 15

Every state is numbered. They are as in the follow table. Whenever the states

changed, it is visible to the programmer. The numbers are assigned randomly.

Table 3: Display Assignments for Seven Segments

State First Digit Display Second Digit Display

Check Key Six Six

Wait Button A One One

Wait Button B Two One

Wait Button C Two Three

Wait Unlock Three Two

Wait Lock Three Three

All the state changes in the source code is based on the clock’s edge change.

When the clock changes from Low to High, the states will trigger themselves according

to the input conditions. The code is as follow.

always @ (posedge clk)

As for the states, they are changing according to the previous and current

conditions. A case statement is used to reach the mean. The state machine diagram is as

in Figure 3.3. The buttons are checked in sequence if there is no key checked in the

earlier state. If the keys are not in sequence, the system will go back to the earlier state

and wait for the correct input to be inserted.

The pre-programmed passkey here is A, B and then C. The button D is

programmed for cancel, in case of user wants to cancel the input. It is also used to check

the initial status of the system too examine the functionality of the system.

For every true condition met, the system will proceed to open the door. The

system will give an enable signal to the door unlocking system to unlock the door using

the manual lock knob internally. While the internal door system tries to unlock the door,

the keyless entry system will wait until the manual lock knob gives the unlock signal,

and will automatically open the car’s door.

 16

Figure 3.4 State Diagram for version_11.v

START

Check Key

Exist?

NO

Initial State

Check
Button A

NO/Cancel

Check
Button B

Check
Button C

NO/Cancel

Correct?

NO/Cancel

Unlock, Disarm
Alarm, Enable Light

Final State

END

TRUE

TRUE

TRUE

TRUE

TRUE

NO

 17

3.2.3 Compiling

The Verilog code is processed by several Quartus II tools that analyze the code

and generate an implementation of it for the target chip. The tools are controlled by the

application program called the Compiler.

It can be found by selecting Processing>Start Compilation. As the compilation

moves through the various stages, its progress is reported in the window on the left side

using meter bars. Successful (or unsuccessful) compilation is indicated in a pop-up box.

Acknowledge it by clicking OK. In the message window, at the bottom of the Figure

3.5, various messages are displayed. In case of errors, there will be appropriate

messages given written in red font. They must be cleared by correcting the

corresponding errors until there are no more errors.

Figure 3.5 Window after a successful compilation

 18

3.2.4 RTL Viewer

Quartus II software includes a tool that cam display a schematic diagram of the

designed circuit. The display is at Register Transfer Level of detail, and the tool is called

the RTL Viewer. Click Tools>RTL Viewer. To save the diagram as a picture, go to

File>Export, and rename the file and select the destination directory. The RTL view of

the source code is at Appendix B.

3.2.5 Simulator Tool

Simulator tool is to simulate the source code without downloading the code into

the FPGA board. It can be found by selecting Tools>Simulator Tools. Choose

Functional for simulation mode. Click Open, and a new window as depicted in Figure

3.6 will appear. On Figure 3.6, tick the check box of Overwrite simulation input file

with simulation results. Simulation timing is left as default and so the other values.

 19

Figure 3.6 Simulation start window

Upon entering Figure 3.7, the left pane on the window is empty. Right click on

the empty space to enter the Node or bus. Select the input pins and the output pins to list

them out on the left pane. Select OK after selecting all the desired pins. Save the

waveform file by selecting File>Save and name it the same as the module’s top-level

name. The extension is .vwf.

To start simulating, go back to Simulator Tool window. Click on Generate

Functional Simulation Netlist. Ensure that this box is pressed every time a change is

made at the waveform file. Press Ctrl+I to start simulation. Upon running simulation,

the progress bar on Simulator Tool window will be triggered showing the process done.

Click OK on the pop-up box that appears after simulation is done.

 20

Figure 3.7 Entering pins for the waveform window

After simulation is done, the window as Figure 3.7 will be filled with waveform,

in case of no errors. It is shown in Figure 3.8. Note that the inputs were assigned with

cases that might occur to the system.

Figure 3.8 Successful simulation waveform windows

 21

Figure 3.9 Pin Assignments window

As the waveform is analyzed and is determined to be correct, the next step is to

download the source code into the chip. This is done by accessing Assignments>Pins.

A new window will appear as depicted in Figure 3.9.

3.3 Using the FPGA Board

The board used for the study is from University Program UP2 Education Kit.

The board comes with two chips:

i. An EPF10K70 device in a 240-pin power quad flat pack (RQFP) package

ii. An EPM7128S device in an 84-pin plastic J-lead chip carrier (PLCC)

package.

The first chip is selected for this study for it has 3744 logic elements and nine

embedded logic array, compared to the other one which has only 2,500 gates. It is due to

safety margin in case the source code implies a large number of logic elements. Thus,

 22

insufficient number of logic elements will not be encountered. The board used is in

Figure 3.10. Note that the rightmost chip is the FLEX10K while the other one is the

EPM7128S chip.

Figure 3.10 Altera FPGA Board.

To interface the board with computer, ByteBlasterII cable is used. It is a cable

with LPT1 port at an end of the cable and the other end is JTAG port. LPT1 port is the

old printer port and usually is colored in pink. To use the cable, one must install the

driver of the cable into the computer since it is not installed upon installing Quartus II

software.

The driver is located in the Quartus II installed directory, within the folder

win2000, under the file name of win2000.inf. Install the driver manually, through

Computer Management. Restart the computer after installation.

 23

3.3.1 Configuring the FPGA board

There are four jumpers on the FPGA board. They are TDI, TDO, DEVICE and

BOARD. To use the EPF10K70 chip, set the jumpers as Figure 3.11.

Figure 3.11 Jumper Settings for Configuring FLEX10K70

3.3.2 Setting up Programming Hardware in Quartus II Software

Choose Programmer from the Tools menu. The Programmer window will open.

Click the Hardware Setup... button to open the Hardware Setup window. Note that:

i. The selected programming hardware is identified as Currently Selected

Hardware.

ii. Programming hardware that is already set up appears in the Available

hardware items window.

Click the Add Hardware button to open the Add Hardware window if the

programming hardware you would like to use is not listed in the Available hardware

items window.

a. Select the appropriate programming cable or programming hardware from the

Hardware Type list.

b. Select the appropriate port and baud rate if necessary.

c. Click OK.

C3 C3

C1 C1

C2

C3

C2

C3

C3

C1

C2

C1

C2

 24

Select the programming hardware you would like to use by choosing it in the

Available hardware items list. Click Close. Now, the program is ready to download the

source code into the board.

3.3.4 Downloading Source Code

Still in the Programming window, make sure the file .sof existed in the list.

Connect the ByteBlasterII cable to the computer printer port and the other to the JTAG

port on then board. The connection is as in Figure 3.12. Tick on the

Program/Configure checkbox.

Figure 3.12 Connected ByteBlasterII cable

As the power is turned on, click on Start to start downloading the source code.

During the progress, the progress bar inside the Programming window will show the

process done. At the same time, on the board, the TCK LED will light up to show that

the chip is being programmed. After the programming is done, the LED will turn off

while the CONF_D LED will light up. This is to show that the chip has been

successfully configured.

FPGA Board

 Personal Computer 1

2

2

1

ByteBlasterII

 25

3.4 Hardware Simulation Setup

Hardware simulation is to simulate the source code through hardware mean, the

FPGA board. Following is the table for the FPGA board’s connection pins.

Table 3.1 Pin Assignments for the FPGA board

Pin Names FLEX Pin Function Board Pin

clk PIN_91 Global Clock N/A

Sw[0] PIN_29 Push Button D N/A

Sw[1] PIN_28 Push Button C N/A

Sw[2] PIN_48 Push Button B Hole 48 (A)

Sw[3] PIN_45 Push Button A Hole 45 (A)

Man_lock PIN_34 Manual Lock Knob FLEX Switch 8

Key PIN_33 Key FLEX Switch 7

lock PIN_162 Lock Trigger Hole 55 (B)

Disarm_alarm PIN_159 Disarm Alarm Hole 53 (B)

Light PIN_157 Light Trigger Hole 51 (B)

 The pins are connected to their respective signals. The input pins were connected

to the switches while the outputs were shown using LED signals. Note that the on-board

LEDs are Active Low, thus supplying Low signals to them will make them light up. The

following table shows their connected ends.

Table 3.2 Pins Connection on the FPGA board

Function Connection

Dedicated Clock Internal Clock

Push Button A MAX_PB1

Push Button B MAX_PB2

Push Button C FLEX_PB1

Push Button D FLEX_PB2

Light LED

Disarm ALarm LED

Lock Trigger LED

 26

 Shown in Figure 3.13 is the final hardware wiring for the keyless entry system.

The expansion holes on the FPGA board is connected to the wires using female jumper

headers, and so at the veroboard. They are not soldered to the FPGA board anyhow, but

the legs are bent to keep a firm hold to the board.

 The LEDs on the verobod are connected so they are active Low. They anode part

of the LEDs were connected to 5V supply. Their cathodes were in series with 1kΩ

resistor. The resistor’s ends were connected to the FPGA board.

Figure 3.13 Hardware Wiring

3.5 Summary

This important section provides the in-depth details of the auto keyless entry

system design from the source code to the hardware simulation. The application of how

the software is used explained here. The software explained was Altera Quartus II 5.0

including the sub functions, such as Simulator Tool, Programming and RTL Viewer.

Graphical display of the setting was shown, as well as the setup for programming.

Finally, pin configurations for the system are also explained in detail.

