

Fabrication and Characterization of Microfluidic Field Effect Transistor on Silicon Substrate

by

Maizatul binti Zolkapli

(0730110180)

Thistemis A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Microelectronic Engineering)

School of Microelectronic Engineering UNIVERSITI MALAYSIA PERLIS

2010

UNIVERSITI MALAYSIA PERLIS

	Γ	DECLARATION OF THESIS
Authors' full name	:	Maizatul binti Zolkapli
Date of Birth	:	7 September 1977
Title	:	Fabrication and Characterization of Microfluidic Field Effect
		Transistor on Silicon Substrate
Academic Session	:	2007 – 2009
		- Dr
I hereby declare that the	e thesis	becomes the property of Universiti Malaysia Perlis (UniMAP) and
to be placed at the librar	ry of Un	iMAP. This thesis is classified as:
CONFIDENTIAI		(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED		(Contains restricted information as specified by the organization
	X	where research was done)*
OPEN ACCESS	5	I agree that my thesis is to be made immediately available as hard
. 5	Y	copy or on-line open access (full text)
I the author give pern	nission t	to the UniMAP to reproduce the thesis in whole or in part for the
		mic exchange only (except during a period of years, if so
requested above).	uouuoi	into encludge only (encope during a period of years, it so
		Certified by:
SIGNATURE		SIGNATURE OF SUPERVISOR
(NEW IC NO. /PASSP	PORT N	IO.) NAME OF SUPERVISOR
Date:		Date:

GRADUATE SCHOOL

UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfillment of a post graduate degree from Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in their absence, by Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Malaysia Perlis for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or make other use of material in whole or in part of this thesis are to be addressed to:

Dean of Center for Graduate Studies

Universiti Malaysia Perlis

Jalan Bukit Lagi

01000 Kangar

Perlis Indera Kayangan

Malaysia

APPROVAL AND DECLARATION SHEET

This thesis titled Fabrication and Characterization of Microfluidic Field Effect Transistor on Silicon Substrate was prepared and submitted by Maizatul binti Zolkapli (Matrix Number: 0730110180) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the award of degree of Master of Science (Microelectronic Engineering) in Universiti Malaysia Perlis (UniMAP).

Checked and Approved by

(Associate Professor Dr. Prabakaran Poopalan)

School of Microelectronic Engineering

Universiti Malaysia Perlis

(Date:)

Thistenis

School of Microelectronic Engineering

Universiti Malaysia Perlis

2010

ACKNOWLEDGEMENTS

For the past two years I owe a lot to my advisory committee, my friends, my family and many others who had given me the confidence, and encouragement throughout those countless hard-working days and nights.

I am deeply grateful to my supervisor, Assoc. Prof. Dr. Prabakaran Poopalan. His wide knowledge, serious research attitude and enthusiasm in work deeply impressed me and taught me what a true scientific researcher should be.

My friends in photonic and failure analysis lab not just helped me with my research work, but also let me enjoy a friendly work environment. Amongst them, I would like to specifically thank Najah, Saziela, Ikhwan, Sutikno, Seng Fatt and Emi, from whom I learned a great deal when I was starting my research work. Many thanks also goes out to Steven, Mydin, Fizah, Gium, Bojie, Charan, Aladdin and many others that I cannot enumerate here for their endless moral support.

I am also grateful to the late Mr Phang and his team, Hafiz, Bahari, Shila and Hamidah who meticulously kept the research clean room functioning well at all times.

Finally my sincere appreciation to my husband lesh, my two wonderful kids Sara and Raziq, and not forgetting Mak, Abah, Andong, Mak Long and my brothers for their love and support throughout these years. Only with their love and encouragement was this dissertation made possible.

TABLE OF CONTENTS

DECLARATION OF THESIS iii COPYRIGHT iii APPROVAL AND DECLARATION SHEET iv ACKNOWLEDGEMENTS vi ACKNOWLEDGEMENTS vi LIST OF CONTENTS vi LIST OF TABLES xi LIST OF FIGURES xvi LIST OF ABBREVIATIONS xvi LIST OF PUBLICATION xix ABSTRAK xx ABSTRAK xxi ABSTRAK xxi Merofluidics and microfluidic devices 1 Nicrofluidic Field Effect Transistor 8 Objectives of this study 10 Dissertation Organization 10					AGES
CHAPTER 1 INTRODUCTION Introduction 1 Microfluidics and microfluidic devices 1 Survey of past experimental work 3 Microfluidic Field Effect Transistor 8 Objectives of this study 10		DECLARATION OF THESIS COPYRIGHT APPROVAL AND DECLARATION SHEET ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF PUBLICATION ABSTRAK ABSTRACT			ii iii iv v vi x xi xvi xvi xviii xix xx
Microfluidics and microfluidic devices 1 Survey of past experimental work 3 Microfluidic Field Effect Transistor 8 Objectives of this study 10					
Survey of past experimental work3Microfluidic Field Effect Transistor8Objectivesof this study10		Introduction		1	
Microfluidic Field Effect Transistor 8 Objectives of this study 10		Microfluidics and microfluidic devices		1	
Objectives of this study 10	()	Survey of past experimental work		3	
		Microfluidic Field Effect Transistor		8	
Dissertation Organization 10		Objectives of this study		10	
		Dissertation Organization	10		

1.1 1.2

1.3

1.4

1.5

1.6

CHAPTER

.1 .2

.3

.4

2 THEORY

	Introduction					11	
	Metal Oxide Ser	12	X				
	N-channel Enha	ncem	ent-type MOSI	FET	13	6	
	Basic Structure		13		N		
	Basic Operation	and (Characteristics		\mathcal{S}		14
			2.2.2	N-channel Depletion-type	MOSFE	Г	
				16			
	Basic Structure		16	. 01			
	Basic Operation	and (Characteristics	arte			17
	Microfluidic Fie	eld Ef	fect Transistor	4	19		
	Basic Structure		<i>,</i>	$\langle \mathcal{O} \rangle$		19	
	Basic Operation	and (Characteristics	<u>,</u>		20	
	Summary					24	
	CHAPTER		0				
	3 F	ABR	CATION AN	D CHARACTERIZATIO	DN		
	0	Y					
	Introduction					25	
	Photomask Desi	gn					26
<u> </u>	3	.2.1	Alignment Ma	ark Design			28
	3	.2.2	Source and D	rain Mask Design			29
	3	.2.3	Channel and I	Reservoir Mask Design			30
	3	.2.4	Contact Mask	Design			30
	3	.2.5	Holes for Gate	e Cover Mask Design			31
	3	.2.6	Complete Ma	sk Design			31
	Fabrication Proc	cess					32
	3	.3.1	Wafer Prepara	ation			33
	3	.3.2	Oxidation				35

vii

		3.3.3	Photolithography	36
3.3.3.1	Photoresist Co	oating a	nd Soft Baking 36	
3.3.3.2	Alignment and	d Expos	sure of Photoresist 37	
3.3.3.3	Development	of Patte	erns 37	
3.3.3.4	Hard Baking		38	X
3.3.3.5	Pattern Inspec	tion	38 Etching Doping and Diffusion	5
		3.3.4	Etching	39
		3.3.5	Doping and Diffusion	41
		3.3.6	Physical Vapour Deposition (PVD)	42
		3.3.7	Gate Formation	42
	Electrical Tes	ting and	d Characterization	44
	Summary		office.	49
			A A A A A A A A A A A A A A A A A A A	
	CHAPTER			
	4 RESU	LT AN	ID DISCUSSION	
	Introduction			51
	Wafer Prepara	ation		51
	Thermal Oxid	ation	¥	52
	Channel and I	Reservo	ir Formation	54
		4.4.1	Photolithography Channel and Reservoir	55
		4.4.2	Silicon Dioxide Etch at Channel and Reservoir Region	on 57
	\mathcal{N}	4.4.3	Silicon Etch at Channel and Reservoir Region	58
\bigcirc	4.5 S	ource a	nd Drain Formation	62
		4.5.1	Photolithography of Source and Drain	63
		4.5.2	Silicon Dioxide Etch at Source-Drain Region	64
		4.5.3	Phosphorus Doping and Diffusion at Source-Drain R	legion 65
	4.6	Expos	ing Silicon at Channel-Reservoir Region	66
		4.6.1	Photolithography of Channel-Reservoir	67
		4.6.2	Silicon Dioxide Etch at Channel-Reservoir Region	68
	4.7	Metall	lization	69

	4.7.1	Aluminum Sputtering Using		70
		Plasma Vapor Deposition (PVD)		
	4.7.2	Photolithography of Contact		71
	4.7.3	Aluminum Etch and Photoresist Strip	X	
	72	Aluminum Etch and Photoresist Strip Formation and Complete Device	6	
4.8	Gate F	ormation and Complete Device		73
4.9	Electri	cal Testing and Characterization		73
	4.9.1	Source and Drain Resistivity		73
	4.9.2	Current-Voltage (I-V) Characteristics		75
4.10	Summ	ary		87
		otte		
CHAPTER		1		
5	CONC			
5	CONC			
5 Introduction	CONC	Clusion	89	
	CONC		89 89	
Introduction				89
Introduction		rotected		89 92
Introduction	5.2.1	Fabrication of Microfluidic FET		
Introduction	5.2.1 5.2.2 5.2.3	Fabrication of Microfluidic FET Electrical Test Set-up of Microfluidic FET Test and Characterization of Microfluidic FET		92
Introduction Conclusion	5.2.1 5.2.2 5.2.3	Fabrication of Microfluidic FET Electrical Test Set-up of Microfluidic FET Test and Characterization of Microfluidic FET		92 94
Introduction Conclusion	5.2.1 5.2.2 5.2.3 tion for	Fabrication of Microfluidic FET Electrical Test Set-up of Microfluidic FET Test and Characterization of Microfluidic FET		92 94

LIST OF TABLES

TABLES	TITLE	PAGES
Table 2.1	Summary of the enhancement and depletion type of	×12
	MOSFET	
Table 3.1	The silicon wafer specifications	33
Table 3.2	Summary of the wet etch processes	40
Table 3.3	Sample of tabulated data	46 51
Table 4.1 Table 4.2	Results of starting material Optimized parameters for photolithography process	51 56
Table 4.2	Channel width measured with micrometer scale post	50 57
Table 4.4	photolithography process Channel width measured with micrometer scale post SiO ₂	58
	etching process	
Table 4.5	Channel width and depth measured with profilometer and	60
	SEM	
Table 4.6	Channel resistance (between source and drain) of the	74
	microfluidic FET with and without DI water	
Table 4.7	Summary of electrical test results	88
C This te	n'is prov	
CTHIS	LIST OF FIGURES	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Schematic of a nanofluidic transistor	4
Figure 1.2	Micrograph of the fabricated device, with 120 m long channels	5
Figure 1.3 Figure 1.4 Figure 1.5	(scale bar is 10 m) Illustration and realization of a microfluidic-based NOT gate Fabricated flux stabilizer (non-linear resistor) Microfluidic flip-flop	6 7 7

Figure 1.6 Figure 1.7	Two distinct flow patterns representing the states of the flip flop Microfluidic FET overview showing the electrical contacts and	8 9
	source/ drain doped area (shaded). The clear areas indicate the	
Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4	reservoirs and channel Physical structure of a typical <i>n</i> -channel MOSFET transistor (a) n-channel enhancement type MOSFET, (b) circuit symbol Channel formation in the n-channel enhancement-type MOSFET Transfer and drain characteristics of n-channel enhancement-type	11 14 14 16
Figure 2.5 Figure 2.6	MOSFET (a) n-channel depletion type MOSFET, (b) circuit symbol n-channel depletion-type MOSFET with $V_{GS} = 0V$ and an applied	17 17
Figure 2.7	voltage V_{DD} Reduction in free carriers in channel due to a negative potential at	18
Figure 2.8	the gate terminal Transfer and drain characteristics of n-channel depletion-type	19
Figure 2.9 Figure 2.10	MOSFET Schematic representation of microfluidic transistor Schematic of an electroosmotic flow channel with a finite EDL.	20 21
	The charges drawn in the figure indicate net charge. The	
	boundary layers on either wall have a thickness on the order the	
Figure 2.11	Debye length of the solution Cross section of microfluidic FET with (a) positive gate voltage	22
Figure 3.1 Figure 3.2 Figure 3.3	applied and (b) negative gate voltage appliedTop-down microfabrication methodA 100 mm diameter circle is divided into four quadrantsAlignment mark with dimensions; (a) Alignment mark for layer 1	26 27 28
.5	and 3 placed at the edge of the wafer, (b) Alignment mark for	
	layer 2 and 4 placed at the edge of the wafer and (c) Center	
Figure 3.4 Figure 3.5 Figure 3.6	alignment mark for all four layers A complete alignment mark on a piece of glass mask Source and drain dimension The dimension of channel and reservoir structure with <i>x</i> varies	29 29 30
Figure 3.7 Figure 3.8 Figure 3.9	between 5 μm to 500 μm Contact dimension Gate holes dimension (a) A complete mask set for microfluidic FET fabrication and (b)	30 31 32
Figure 3.10 Figure 3.11	The schematic representation of the microfluidic transistor The process flow for the fabricated device Thickness of the microscope cover slip measured using	33 43

 \mathbf{O}

profilometer

	Figure 3.12 Figure 3.13 Figure 3.14 Figure 3.15	Top view of the completed microfluidic FET Keithley 4200 Test Environment Setup for resistance test The circuit configuration for microfluidic FET manual testing Manual test connection for microfluidic FET IV characteristic	44 44 45 47
	Figure 3.16 Figure 3.17 Figure 3.18 Figure 3.19 Figure 3.20	Close up of the sample connection Hot spot at source and drain IRF640 IV curve from SPA IRF640 IV curve from manual test circuit IRF640 IV curve from Tektronix 370B curve tracer	47 48 48 49 49
	Figure 4.1 Figure 4.2 Figure 4.3	Graph of the native oxide thickness of the starting material before and after 30 seconds BOE Graph of SiO_2 thickness against oxidation time Graph of SiO_2 thickness after 6 hours oxidation. Oxide layer	52 53 54
	-	protects channel and reservoir region during doping and diffusion process	
	Figure 4.4	Schematic diagram of the steps involved in the channel and reservoir formation (layer thickness not to scale): (a) the mask is	55
		being exposed under I-line, 365 nm UV light for pattern transfer,	
		(b) develop PR to wash away the non-reacted polymer, (c) etching	
		SiO_2 to open up silicon area, (d) resist removal, (e) silicon etch	
		(30 wt% KOH at 80 °C) and (f) dry oxidation to protect channel	
	Figure 4.5	and reservoir during source-drain diffusion HPM images of the various channel width after the developing	56
		process. The patterned are well defined and the size matches the	
	Figure 4.6	drawn design HPM images of the various channel width after the 1 hour BOE.	58
$\langle \rangle$	Figure 4.7 Figure 4.8	SiO ₂ is removed in the reservoir and channel region HPM images of the various channel width post KOH etch Profilogram of the channel width and depth. On the left is the	59 61
\bigcirc		channel width and on the right is the channel depth for (a) 5 μm	
		channel, (b) 20 µm channel, (c) 50 µm channel, (d) 100 µm	
	Figure 4.9	channel and (e) 500 μm channel respectively SEM micrographs of the channel width and depth after KOH	62
		etching using 30 % concentrated etchant for 12 minutes at	
		80 °C. The anisotropic wet-etched profile in <100> wafer is	
		shown	

- Figure 4.10 Schematic diagram of the steps involved in the source and drain 63 formation (layer thickness not to scale): (a) the mask is being exposed under I-line, 365 nm UV light for pattern transfer, (b) develop PR to wash away the non-reacted polymer, (c) etching SiO₂ to open up silicon area and (d) phosphorus doping and diffusion at source and drain region
- Figure 4.11 Aligning the source-drain mask at the centre of the existing 63 channel-reservoir
- Figure 4.12 Misalignment of second layer to the first layer. The source-drain 64 and channel are not touching
- Figure 4.13 HPM images of source/drain structure aligned to the channel after 65 developing
- Figure 4.14 Lower sheet resistance post diffusion indicates dopant have 66 diffused through the silicon. The processing time is 30 min
- Figure 4.15 Schematic diagram of the steps involved to remove SiO₂ at the 66 channel-reservoir area (layer thickness not to scale): (a) the mask is being exposed under I-line, 365 nm UV light for pattern transfer, (b) develop PR to wash away the non-reacted polymer, (c) etching SiO₂ to open up silicon area at channel-reservoir region

Figure 4.16	Misalignment of PR and existing pattern	67
Figure 4.17	Patterns are properly aligned and the oxide at the channel-	68
. XO	reservoir region is ready to be etched away	
Figure 4.18	Channel-reservoir posts 12 minutes BOE etch. Colour changed	69
	from pink to grey	
Figure 4.19	Schematic diagram of the steps involved in the metallization	70
7	process: (a) Aluminum is deposited on the sample, (b) the mask is	
	being exposed under I-line, 365 nm UV light for pattern transfer,	
	(c) develop PR to wash away the non-reacted polymer, (d) etching	
	aluminum for metallization	

Figure 4.20 The profilogram for aluminum thickness after three deposition 70 process

- Figure 4.21Sample surface after aluminum deposition process71Figure 4.22Contact at source-drain region after photoresist developed process7272Contact at source-drain region after photoresist developed process72
- Figure 4.23Contact region after aluminum etch and photoresist strip72

Figure 4.24 Figure 4.25 Figure 4.26	The completed structure of the microfluidic FET SPA plots for channel resistance Measuring resistivity between source and drain for both with and	73 74 75
Figure 4.27	without liquid in the channel I-V plot for 20 μ m channel, positive and negative V _{GS} with	77
Figure 4.28	different V_{DS} for (a) dry test and (b) wet test I-V plot for dry test, positive and negative V_{GS} for (a) 5 μ m, (b) 20	79
Figure 4.29	μ m and (c) 50 μ m channel I-V plot for wet test, positive and negative V _{GS} for (a) 5 μ m, (b)	81
Figure 4.30	20 μm and (c) 50 μm channel I-V curves of 5 μm channel comparing dry and wet test by (a)	83
Figure 4.31	applying positive V_{GS} and (b) applying negative V_{GS} I-V curves of 20 μ m channel width comparing dry and wet test by	84
Figure 4.32	(a) applying positive V_{GS} and (b) applying negative V_{GS} I-V curves of 50 μ m channel width comparing dry and wet test by	86
Figure 4.33	(a) applying positive V_{GS} and (b) applying negative V_{GS} I-V curve comparing different channel widths for dry and wet for	87
Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4	a fixed V _{DS} (4 V) The circuit configuration for microfluidic FET manual testing IRF640 IV curve from SPA IRF640 IV curve from manual test circuit IRF640 IV curve from Tektronix 370B curve tracer	93 93 94 94
CTHISTE	nist	

LIST OF ABBREVIATIONS

Al Aluminum =

o This tem is protected by original copyright

	BJT	=	Bipolar Junction Transistor
	BOE	=	Buffered Oxide Etch
	CTA	=	Conventional Thermal Annealing
	DIW	=	De-ionized Water
	DNA	=	Deoxyribonucleic Acid
	EDL	=	Electrical Double Layer
	FET	=	Field Effect Transistor
	HPM	=	Field Effect Transistor High Power Microscope Inductive Coupled Plasma-Reactive Ion Etching
	ICP-RIE	=	Inductive Coupled Plasma-Reactive Ion Etching
	KITE	=	Keithley Interactive Test Environment
	KOH	=	Potassium Hydroxide
	MEMS	=	Microelectromechanical Systems
	MOSFET	=	Metal Oxide Semiconductor Field Effect Transistor
	MOSol	=	Metal-oxide-solution
	NMOS	=	N-channel Metal Oxide Semiconductor
	OFM	=	Oxidation Furnace Module
	PECVD	=	Plasma Enhancement Chemical Vapour Deposition
	PR	=	Photoresist
	PVD	=	Physical Vapour Deposition
	RCA	=	Radio Corporation of America
	SC	_	Standard Cleaning
	SEM	=	Scanning Electron Microscope
	SEM	_	Silicon
	SiO ₂	=	Silicon dioxide
	SMU	=	Source Monitor Units
	SOG	=	Spin On Glass
	SPA	=	Semiconductor Parametric Analyzer
	UV	=	Ultraviolet
	WCM	$ \geq $	Wet Cleaning Module
	μTAS	\mathbf{Q}	Miniaturized Total Chemical Analysis System
	+ve	=	Positive
	-ve	=	Negative
			1 oguillo
	0		
	× *		
()	-		

Quantity Symbol Unit					
			O Y		
XO					
LIST OF SYMBOLS					
· · · · ·					
Quantity	Symbol	Unit			
Drain current	ID	Ampere (A)			
Drain voltage	V _{DS}	Volts (V)			
Gate voltage	V _G	Volts (V)			
Load resistance	R _L	$Ohm(\Omega)$			
Drain current Drain voltage Gate voltage Load resistance Load resistance voltage Sheet resistance	VL	Volts (V)			
Sheet resistance	R _s	ohms per square (Ω/\Box)			

Ist of publication to substrat 1. M. Zolkapli, N.M. Zabidi, V. Retnasamy, Z. Sauli, and P. Poopalan. Fabrication of Microfluidic Transistor on Silicon Substrate. 2009 International Symposium on Electrohydrodynamics. or this it

FABRIKASI DAN PENCIRIAN TRANSISTOR KESAN MEDAN BENDALIR MIKRO DI ATAS SUBSTRAT SILIKON

orioinal copyright

ABSTRAK

• Pembinaan transistor kesan medan pengaliran bendalir mikro berasaskan silicon telah dijalankan. Objektif utama kajian ini dijalankan adalah untuk mempersembahkan daripada konsep, rekabentuk transistor kesan medan pengaliran bendalir mikro dan menghasilkan aliran proses yang berkaitan dalam fabrikasi transistor kesan medan bendalir mikro di atas kepingan silicon, yang akhirnya akan diperincikan menggunakan ujian-ujian yang bersesuaian. Maka, fabrikasi di atas silikon jenis p-<100> bersaiz 4 inci melalui proses fotolitografi, hakisan secara kimia, pengoksidaan termal, penyesaran dan pelogaman dengan focus khususnya ke atas laluan konduksi bendalir telah dijalankan. Tiga peringkat topeng foto telah direkabentuk menggunakan perisian AUTO-CAD dan dicetak krom di atas kaca jenis soda-kapur. Struktur asas peranti ini telah diadaptasi daripada struktur MOSFET sedia ada dan telah diolah untuk menggabungkan laluan bendalir di dalam operasinya. Oleh itu, tiada perubahan dari segi fungsi tetapi laluan konduksi utama diganti dengan bendalir, dan bukannya semikonduktor yang telah didopkan. Dua tangki dihubungkan melalui satu laluan bendalir dengan setiap satu kawasan punca dan saliran yang telah didopkan diletakkan di kedua-dua bahagian yang bertentangan dengan laluan bendalir untuk mengurangkan konduksi terhadap substrat. Kedua-duanya diletakkan jauh antara satu sama lain bagi meminimakan pengaliran elektron melalui laluan bendalir bilamana aliran tersebut tidak diisi dengan cecair. Lebar aliran telah ditetapkan kepada lima saiz, iaitu 5 µm, 20 µm, 50 µm, 100 µm dan 500 µm untuk mengkaji kesan ke atas pencirian transistor berbanding saiz aliran. Mobiliti

elektron di dalam laluan bendalir terkesan dengan kehadiran cecair polar. Halaju elektron kini mengalami lebih banyak pelanggaran dengan molekul air yang bergerak dan polar, disertai dengan kesan medan elektrik yang dikenakan pada get. Profil laluan bendalir diperiksa dengan bantuan stilus profilometer dan SEM. Isu penutupan get di atas laluan bendalir diatasi dengan menggunakan satu lapisan kaca nipis yang telah disalut dengan aluminum pada sebelah permukaannya dan dilekatkan ke atas permukaan silikon. Tetapi teknik tersebut akan meyebabkan lebih tinggi ambang voltan kerana tebal silika ialah 80 µm dan jauh lebih tebal berbanding oksida MOSFET yang biasa. Kebiasaannya tebal lapisan oksida MOSFET adalah di sekitar 0.02 – 0.1 µm. Justeru, ia akan menyebabkan pengurangan medan elektrik di sekitar kawasan get. Ujian ke atas peranti berlansung semasa proses fabrikasi, di mana pelbagai kerintangan, ketebalan lapisan yang dihasilkan dan parameter-parameter lain diukur. Namun, ukuran-ukuran tersebut tidak dapat memberi pengertian atau pemahaman kepada prestasi akhir peranti tersebut. Oleh yang demikian, ujian elektrikal dilaksanakan bagi kedua-dua kondisi iaitu dengan dan tanpa cecair di dalam laluan bendalir dengan menggunakan alat penganalisa parametrik semikonduktor, penyurih lengkung dan litar berarus tinggi. Pencirian I-V dan kerintangan peranti dianalisa dan keputusan menunjukkan terdapat hubungan di antara arus dan voltan serta cirinya mematuhi teori. Namun demikian, peranti ini tidak dapat dikategorikan sebagai PMOS atau NMOS kerana laluan bendalir tidak didopkan. Keputusan adiran adiran menunjukkan rintangan berkurangan sebanyak satu tingkat bagi kondisi basah berbanding kondisi kering. Ini sekali lagi menunjukkan kehadiran molekul air di dalam laluan bendalir membantu

FABRICATION AND CHARACTERIZATION OF MICROFLUIDIC FIELD EFFECT TRANSISTOR ON SILICON SUBSTRATE

ABSTRACT

The development of a silicon-based microfluidic field effect transistor has been carried out. The main objective of this study is to present from concept, the design of a microfluidic FET and to develop its appropriate process flow in fabricating the microfluidic FET on silicon wafer, which will finally be characterized using a suitable test methodology. Hence, fabrication on a p-<100> 4 inch silicon wafer by photolithography, wet chemical etching, thermal oxidation, diffusion and metallization with focus on a liquid conduction path has been executed. A three level photo mask has been designed via AutoCAD and chrome printed on soda-lime glass. The basic structure of the device is adapted from the conventional MOSFET structure and redesigned to incorporate a liquid channel in its operation. Therefore, the functionality remains unchanged but the principal conduction path is replaced by a fluid instead of a doped semiconductor. Two reservoirs are connected via a channel with source and drain regions doped on opposite sides of the liquid channel to reduce conduction through the substrate. They are placed as far away from each other in order to minimize electron flow through the fluidic channel when not filled with fluid. The channel widths are set to five sizes, which are 5 μ m, 20 μ m, 50 μ m, 100 μ m and 500 μ m in order to study the effect of the transistor characteristics against channel size. The electron mobility in the channel is significantly affected due to the presence of polar liquid. The electron drift velocity now undergoes more collisions with mobile water molecules, which is itself polar and hence affected by the applied gate electric field. The channel profiles are inspected with the aid of stylus profilometer and SEM. The capping issue of the gate on the channel i.e. a void is addressed using a thin layer of single-side aluminum coated glass glued onto the silicon surface. This however results in higher threshold voltage as the silica thickness is about 80 μ m, which is much thicker than the normal MOSFET oxide. Typically the thickness of the oxide layer in MOSFET is in the range of $0.02 - 0.1 \mu m$. Therefore, this causes higher reduction in electric field at the gate area. Testing of the devices commences during the fabrication process where the various resistivity, grown layer thicknesses and other parameters are measured. However, these measurements do not give an insight towards the final device performance. Thus, an electrical test is performed on both conditions, with and without liquid inside the channel using the semiconductor parametric analyzer, curve tracer and a high current circuit. I-V characteristics and resistivity of the devices is analysed and the results show that there is some current and voltage relation and the characteristics does conform to the theory. However, the device can not be categorized either as PMOS or NMOS since the channel is undoped. The resistance is reduced by one order for wet condition as compared to dry condition. This again shows that the presence of water molecules in the channel improves the carrier mobility.

CHAPTER 1

INTRODUCTION

1.1 Introduction

The semiconductor industry has grown rapidly in the past few decades, driven by the microelectronics revolution. New technologies emerge with new materials and manufacturing processes that are used to create new products. Microelectronic processing has also fuelled integrated microfluidic systems which have gained interest in recent years for many applications including chemical, medical, automotive and industrial (Gad-el-Hak, 2006, p. 3-1). This chapter provides the background knowledge on which the studies are based.

1.2 Microfluidics and microfluidic devices

Microfluidies is a multidisciplinary field comprising of physics, chemistry, engineering and biotechnology which deals with the behavior, precise control and manipulation of microliter and nanoliter volumes of fluids. It has been an area of intense research, where the key aspect of microfluidics is its smallness. This attribute brings new elements which are not only quantitative, but also qualitative (Ottino & Wiggins, 2004; Karnik, Castelino & Majumdar, 2006).

The volumes involved in microfluidics can be understood by visualizing the size of a one-litre container, and then imagining cubical fractions of this container. A cube measuring 100 mm on an edge has a volume of one litre. A tiny cube whose height, width and depth are 1/1000 (0.001) of this size or 0.1 mm is the size of a small grain of table sugar. That cube will occupy 1.0 nl. A volume of 1.0 pl is represented by a cube

whose height, width and depth are 1/10 (0.1) of the 1.0 nl cube. It would thus take a powerful microscope to resolve this size.

Microfluidic devices on the other hand, are devices where micron sized fluid channels fabricated on a suitable substrate to achieve a specific end application. Channels of the micro-devices are mostly silicon, glass, or quartz based and is fabricated photolithography, etching. deposition. microwetting, by and microimpression which permit the fabrication of miniaturized systems. Interconnection of channels allows the realization of networks along which liquids can be transported from one location to another on a device surface. In this way, small volumes of solution may be introduced from one channel into another, and controlled interaction of reactants is made possible (Verpoorte & Rooij, 2003). Other than channels, nozzles, pumps, mixers, valves, filter, sensors are also categorized as microfluidic devices (Permal, 2007). Typically these devices are either static or increasingly dynamic where the liquid flows through the channels and bends. The small size of the channels combined with capillary effects, pump effects (if any pump is used) and bend effects enable separation and subsequent identification of minute quantities of elements. The ability to manipulate fluids at the micron level brings in several advantages (Marr & Murakata, 2007):

- 1. A significant reduction of sample consumption.
- A larger number of devices consisting of hundreds to thousands of channels and valves can be incorporated on a small planar surface allowing simultaneous parallel and complex analyses.
- 3. Smaller processing time for analyses and synthesis that can be done at the point of need than at a centralized laboratory (bringing laboratory to the sample).
- 4. The fabrication methods are based on traditional silicon-based technologies

which make them easier and cheaper to produce.

Fabrication of microfluidic devices presents new challenges for micro- and nano-engineering. With increasing demand for products associated with the medical, pharmaceutical, and analytical science industries over the past few years, much attention has been paid to the design and manufacture of microfluidic devices. Intensive research has been made especially on silicon-based microfluidic devices (Jackson, 2006). Silicon has become the material of choice for most microfluidic applications because of the well-explored microfabrication techniques of silicon itself. It makes the combination of the mechanical and electrical function in single devices possible (Verpoorte & Rooij, 2003) providing the impetus in the area of MEMS for the enormous activity over the past three decades.

Since the establishment of the field of µTAS in 1990 by Manz, Graber and Widmer, device design and process integration remains as an interesting challenge to be solved (Manz, Graber & Widmer, 1990). In this study, the focus is directed towards the fabrication technology and its related characterization which allows the realization of a silicon-based microfluidic field effect transistor.

Survey of past experimental work

From as early as 1960s, fluidic systems have been experimented with, to perform logic operations. Erickson and Li (2003) reported that modern microfluidics (Gravesen, Branebjerg & Jensen, 1993) can be traced back to the development of a silicon chip based gas chromatograph at Stanford University and the ink-jet printer at IBM. Though both these devices were quite remarkable, the concept of the integrated microfluidic device (which often fall under the broad categories of labs-on-a-chip or miniaturized total analysis systems) as it is known today was not developed until the