

DESIGN, FABRICATION AND CHARACTERIZATION OF CMOS ISFET FOR pH MEASUREMENTS

by

Chin Seng Fatt (0630110086)

onthis tem is protected A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Microelectronic Engineering)

School of Microelectronic Engineering **UNIVERSITI MALAYSIA PERLIS**

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's full name	:	CHIN SENG FATT	
Date of birth	:	28 MAY 1982	
Title	:	DESIGN, FABRICATION AND CHARACTERIZATION OF CMOS ISFET	
		FOR pH MEASUREMENTS	
Academic Session	:	2009/2010	
I hereby declare that the placed at the library of	ne th UniN	esis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be MAP. This thesis is classified as :	
CONFIDENTIA	L	(Contains confidential information under the Official Secret Act 1972)*	
		(Contains restricted information as specified by the organization where research was done)*	
	s	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)	
I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of years, if so requested above).			
tent		Certified by:	
SIGNATURE		SIGNATURE OF SUPERVISOR	
820528-14-5085	5	PROFESSOR DR. UDA BIN HASHIM	
(NEW IC NO. / PASS	POF	RT NO.) NAME OF SUPERVISOR	
Date:		Date:	

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

APPROVAL AND DECLARATION SHEET

This thesis titled Design, Fabrication and Characterization of CMOS ISFET for pH Measurements was prepared and submitted by Chin Seng Fatt (Matrix Number: 0630110086) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the award of degree of Master of Science (Microelectonic Engineering) in University Malaysia Perlis (UniMAP). The members of the Supervisory committee are as follows:

PROFESSOR DR. UDA BIN HASHIM

Director Institute of Nano Electronic Engineering University Malaysia Perlis (Head Supervisor)

MOHD KHAIRUDDIN BIN MD ARSHAD

Lecturer School of Microelectronic Engineering University Malaysia Perlis (Co-Supervisor)

Check and Approved by

(PROFESSOR DR. UDA BIN HASHIM)

Thistenisprot Director / Head Supervisor Institute of Nano Electronic Engineering Universiti Malaysia Perlis

(Date:)

School of Microelectronic Engineering Universiti Malaysia Perlis

Acknowledgements

I would like to thank University of Malaysia Perlis (UniMAP) and specifically School of Microelectronic Engineering for providing me with exceptional 2 years of trials and tribulations. Most of all, the excellent facilities are truly appreciated.

I wish to express sincere gratitude to project advisor, Professor Dr. Uda Hashim through whom that I have learned a lot and for his unfailing patience and guidance with regards to this project. I am also extremely thankful to Mr Mohd Khairuddin Md Arshad for giving a lot of advice and encouragements for my academic and research efforts.

It would have been impossible for me to complete my project without the help of the late Mr Phang Keng Chew and his wife, Ms. Nur Hamidah bt. Abdul Halim, Mr Hafiz b. Abd Razak, Mr Bahari Man, Mr Mohd Sallehudin Saad and Pn Shiela who have continuously aided in the successful completion of this project.

There are too many people to mention individually but some names stand out. I want to extend special thanks to doctoral candidates Pak Wahyu Hidayat and Pak Sutikno Md Nasri for their help and numerous suggestions at many occasions and being such good friends. Pak Wahyu and Pak Sutikno have always maintained a ready willingness to listen and help out in both personal and administrative affairs.

iii

I thank my fellow colleagues of seniors and juniors at the Institute of Nano Electronic Engineering (INEE) and at the School of Microelectronic Engineering for sharing their time, expertise and humour with me. They are particularly Cikgu Kassim, Muzri, Emi, Shahrir, Azizul, Ikhwan, Maizatul, Naim, Syuhada, Ema, Rosyhidi, Siti Fatimah and Foo Kai Loong.

The financial support provided by the Ministry of Science, Technology and Innovation (MOSTI) and Government of Malaysia during 2007-2008 is hereby also acknowledged.

Last but not least, a very big thank you to my beloved family for their support, love and constant encouragement the have bestowed upon me. Without their support, I would never have gotten so far.

Table of Contents

Declaration of Thesis	i
Approval and Declaration Sheet	ii
Acknowledgements	iii
Table of Contents	v
List of Tables	xi
List of Figures	xii
List of Abbreviations	xv
List of Symbols	xviii
List of Appendices	xix
List of Publications	хх
List of Awards	xxii
Abstrak	xxiii
Abstract	xxiv
ten	
Chapter 1 Introduction	1
1.1 Background of Research	1
1.2 Problem Statements	5
1.3 Research Objectives	7

1.4 Research Scopes8

Ŕ

1.5 Thesis Overview9

Chapter 2 Literature Review	11
2.1 Introduction	11
2.2 Ion Sensitive Field Effect Transistor (ISFET)	12
2.2.1 Basic Structure of an ISFET	12
2.2.2 The Operational Principle of the ISFET	13
2.3 Development of ISFET	19
2.3.1 Gate Materials	19
2.3.2 Encapsulation	21
2.3.3 Reference Electrode	23
2.4 Fabrication Technologies of ISFET	25
2.4.1 Standard CMOS Fabrication	25
2.4.2 Custom CMOS Fabrication	27
2.5 ISFET Simulation Model	28
2.6 Applications of ISFET	31
2.6.1 Ionic Measurements	31
2.6.2 Environmental Monitoring	32
2.6.3 Agriculture Field	34
2.6.4 Biomedical Field	35
2.6.5 Others and Future Applications	36
2.7 Chapter Summary	39
Chapter 3 Process and Device Simulations of ISFET	40

3.1 Introduction	40
3.2 Technology Computer Aided Design (TCAD)	40
3.2.1 Overview of Synopsys Taurus TCAD	41

	3.2.1 Taurus TSUPREM4	43
	3.2.2 Taurus MEDICI	43
	3.3 ISFET Model in TCAD	44
	3.4 Process Simulation of ISFET by Taurus TSUPREM4	45
	3.4.1 Initial Structure Generation	46
	3.4.2 Field Oxide Growth Simulation	47
	3.4.3 Source and Drain Region Simulation	48
	3.4.4 Gate Region Simulation	51
	3.4.5 Silicon Nitride Deposition Simulation	53
	3.4.6 Contact Region and Metallization Simulation	53
	3.4.7 Formation of the Complete ISFET	54
	3.5 Device Simulation of ISFET by Taurus Medici	55
	3.5.1 Simulation of Gate Characteristics	56
	3.5.2 Simulation of Drain Characteristics	57
	3.6 Chapter Summary	58
Chap	nter 4 CMOS ISFET Mask Design and Layout	59
	4.1 Introduction	59
	4.2 ISFET Layout	60
\bigcirc	4.3 Mask Fabrication Methodology	62
	4.3.1 Mask Material	62
	4.3.2 Mask Fabrication Set-Up	63
	4.4 Results	64
	4.4.1 N-Well Mask	64
	4.4.2 Source Drain Masks	66

4.4.3 Gate Mask	67
4.4.4 Contact Mask	68
4.4.5 Metal Mask	68
4.5 Discussion	69
4.6 Chapter Summary	70
Chapter 5 ISFET Fabrication using CMOS Process	71
5.1 Introduction	71
5.2 CMOS Process Modules for ISFET Fabrication	71
5.2.1 Thermal Oxidations Modules	71
5.2.2 Photolithography Module	74
5.2.3 Wet Etch Module	78
5.2.4 Thermal Diffusions Modules	80
5.2.5 Thin Films Depositions Modules	80
5.3 CMOS ISFET Fabrication Details	83
5.3.1 Starting Material	83
5.3.2 Field Oxidation	84
5.3.3 N-Well Photolithography	86
5.3.4 N-Well Phosphorus Diffusion	88
5.3.5 N-ISFET Phosphorus Source Drain Formation	90
5.3.6 P-ISFET Boron Source Drain Formation	92
5.3.7 Gate Oxidation	93
5.3.8 Silicon Nitride Deposition	95
5.3.9 Nitride and Oxide Contact Via Etch	97
5.3.10 Metallization	99

Measurements	103
6.1 Introduction	103
6.2 Functional Testing of ISFET on Wafer Level	103
6.2.1 Measurement Set-Up	104
6.2.2 Result and Discussion	106
6.2.2.1 I_D - V_D Characteristics of Al/Si ₃ N ₄ ISFET	106
6.2.2.2 I_D -V _G Characteristics of Al/Si ₃ N ₄ ISFET	108
6.3 Preparation of ISFET for pH Test	110
6.3.1 Wafer dicing	110
6.3.2 Mounting and Wire Bonding	110
6.3.3 Encapsulation	111
6.4 Testing of ISFET in Aqueous pH Buffers	112
6.4.1 Experimental Set-Up	112
6.4.2 pH Buffers	113
6.4.3 Result and Discussion	114
6.4.3.1 I _D -V _D Characteristics of Si ₃ N ₄ ISFET	114
6.4.3.2 pH Sensitivity of Si ₃ N ₄ ISFET	118
6.5 Chapter Summary	121

Chapter 6 Functional Testing and Characterization of CMOS ISFET for pH

Chapter 7 Summary, Conclusions and Future Work		
7.1 Summary of the Thesis	122	
7.2 Conclusions	124	

References

		. X .
Appendix A	Publications	146
Appendix B	Collaborations	148
Appendix C	Awards	149
Appendix D	Newspaper Clipping	150
Appendix E	Synopsys Taurus TSUPREM4 ISFET Source Code	151
Appendix F	Synopsys Taurus Medici ISFET Source Code	153
Chirsten	sprotective	

128

List of Tables

	Table	Description	Page
	3.1	Process steps for ISFET simulation	45
	5.1	Wet Etch Chemical Solutions.	79
	5.2	PECVD Si ₃ N ₄ deposition recipe.	96
	6.1	Measured V _{TH} and sensitivity of ISFETs in three pH buffer solutions	118
\bigcirc			

List of Figures

	Figure	Description	Page
	1.1	Litmus paper.	2
	1.2	Typical pH Glass Electrode.	3
	1.3	Author's impression of the first ISFET by Bergveld (1970).	5
	2.1	Basic structure of an ISFET.	12
	2.2	MOSFET and ISFET	13
	2.3	Charge, field and potential profiles of ISFET	15
	3.1	Overview of Synopsys Taurus TCAD	42
	3.2	MNOS model and ISFET	44
	3.3	The initial structure of the ISFET	46
	3.4	The field oxide growth	48
	3.5	The patterned source and drain region	49
	3.6	The phosphorus concentration profile at the source and drain	50
		region	
	3.7	Phosphorus doping profile at x=10	50
	3.8	Gate oxide growth	51
	3.9	Phosphorus post dry oxidation	52
	3.10	Phosphorus doping profile post dry oxidation	52
	3.11	Silicon nitride deposition	53
	3.12	Metal contacts patterning	54
	3.13	The final structure of the ISFET with doping profile	55
	3.14	Gate characteristics of n-channel metal-nitride gate ISFET	56
	3.15	Drain characteristics of n-channel metal-nitride gate ISFET	57
	4.1	ISFET layout	61

	4.2	Design specifications of ISFET	61
	4.3	Mask fabrication set-up	63
	4.4	Design specification of N-Well region	65
	4.5	N-Well mask layouts	65
	4.6	n-ISFET source drain mask layouts	66
	4.7	p-ISFET source drain mask layouts	67
	4.8	Gate mask layouts	67
	4.9	Contact mask layouts	68
	4.10	Metal mask layouts	69
	5.1	Oxidation furnace module	73
	5.2	Filmetric F20 Thin Film Analyzer	73
	5.3	Photolithography process flow	75
	5.4	Wafer spinner	76
	5.5	Hot plate	76
	5.6	Contact Mask Aligner and Exposure System	77
	5.7	Development Bench	77
	5.8	Wet etch module	79
•	5.9	PECVD module	81
	5.10	PVD module	82
\bigcirc	5.11	Ambios XP-1 Stylus Surface Profiler	83
	5.12	Silicon wafer	84
	5.13	The cross section of the wafer after field oxidation	85
	5.14	The cross section of the wafer after first photolithography	88
	5.15	process The cross section of the wafer after n-well phosphorus diffusion	89

	5.16	The cross section of the wafer after n-region source and drain	91
	5.17	The cross section of the wafer after p-region source and drain formation.	93
	5.18	The cross section of the wafer after gate oxidation. \mathbf{x}	94
	5.19	The cross section of the wafer after silicon nitride deposition.	96
	5.20	The cross section of the wafer after contact via photolithography.	98
	5.21	The cross section of completed CMOS ISFET (a) with metal gate.	101
	5.22	The actual completed CMOS ISFET wafer	101
	6.1	The CMOS ISFET Semiconductor Characterization System (SCS) (a) Micro probe station (b) Keithley 4200	105
	6.2	CMOS ISFET wafer level measurement set-up	105
	6.3	The output characteristics of n-channel ISFET	106
	6.4	The output characteristics of p-channel ISFET	107
	6.5	Transfer characteristics of n-channel ISFET	109
	6.6	Transfer characteristics of p-channel ISFET	109
	6.7	Preparation of the ISFET from dicing till encapsulation	111
~	6.8	Graphic representation of the experimental set-up	113
	6.9	pH buffer solutions from Thermo Scientific	114
\bigcirc	6.10	Output characteristics of n-channel ISFET recorded in different pH buffers using the fixed biasing conditions (Vc=5V)	115
	6.11	Output characteristics of p-channel ISFET recorded in different pH buffers using the fixed biasing conditions ($V_{c}=5V$)	115
	6.12	Plot of the V_G versus pH for ISFETs	119

List of Abbreviations

	AI	Aluminium
	AI_2O_3	Aluminium Oxide
	Ag/AgCl	Argentum/ Argentum Chloride (Silver/Silver Chloride)
	BSC	Back sided contact
	BOE	Buffered Oxide Etch
	Ca ²⁺	Calcium ion
	ChemFET	Chemically modified field effect transistor
	CMOS	Complementary Metal Oxide Semiconductor
	CAD	Computer Aided Design
	I-V	Current-Voltage
	DIW	Deionised Water
	DUT	Device Under Test
	DC	Direct Current
	FET	Field Effect Transistor
	FIA	Flow injection analysis
	ĤÐL	Hardware Description Language
	H ⁺	Hydrogen ion
	IGFET	Insulated Gate Field Effect Transistor
	ISE	Ion sensitive electrode
	ISFET	Ion Sensitive Field Effect Transistor
	K ⁺	Kalium ion
	Hg	Mercury
	Hg ₂ Cl ₂	Mercury Chloride

MIS	Metal Insulator Semiconductor
-----	-------------------------------

- Metal Oxide Semiconductor Field Effect Transistor MOSFET
- MNOS Metal-nitride-oxide-semiconductor
- MFCL Micro Fabrication Cleanroom Laboratory mal copyright
- μTAS Micro total analysis system
- Na^+ Natrium ion
- NMOS N-channel MOSFET
- **O**₂ Oxygen (gas)
- PMOS P-channel MOSFET
- **Physical Vapour Deposition** PVD
- Plasma Enhanced Chemical Vapour Deposition PECVD
- Power of carbon dioxide pCO₂
- Power of hydrogen pН
- Printed Circuit Board PCB
- QC Quality control

RE

rpm

SCE

- Reference Electrode
 - Revolution per minute
- Saturated Calomel Electrode
- SCS Semiconductor Characterization System
- SPA Semiconductor Parameter Analyzer
- Si Silicon
- Silicon dioxide or Silicon oxide or Oxide SiO₂
- Silicon Nitride Si₃N₄
- SPICE Simulation Program With Integrated Circuit Emphasis
- SnO₂ Stanum oxide

List of Symbols

	Symbol	Description	Unit
	I _D	Drain current	A
	V _D	Drain voltage	V
	V_{G}	Gate voltage	V
	V_{TH}	Threshold Voltage	V
	b	Width of Area	μm
	L	Length of Area	μm
	μ _n	Electron mobility in a channel	
	C ₀	Oxide capacitance per unit area	F/m ²
	VDSAT	Drain voltage at saturation	V
\bigcirc			

List of Appendices

Appendix	Description	Page
А	Publications	146
В	Collaborations	148
С	Awards	149
D	Newspaper Clipping	150
E	ISFET TUSPREM4 Simulation Code	151
F	ISFET MEDICI Simulation Code	153
o this tem is	protected	

List of Publications

- [1] U. Hashim and S. F. Chin, "Simulation of NMOS in Standard CMOS Process using Synopsys' TSUPREM-4 and MEDICI," in *Malaysian Technical Universities Conference on Engineering and Technology* (*MUCET*), Universiti Teknologi Tun Hussein Onn, 2006, pp. 36-39.
- [2] S. F. Chin, U. Hashim, and M. K. Md Arshad, "CMOS ISFET Based pH Sensor using Si3N4 Membrane: Towards Biomedical Application," in International Conference on Advancement Materials and Nanotechnology (ICAMN), Langkawi, Malaysia, 2007, p. 176. (selected to be reviewed and published in American Institute of Physics(AIP), USA)
- [3] S. F. Chin, U. Hashim, and M. K. Md Arshad, "Development of N-Well CMOS Process in a University Microfabrication Laboratory," in 2nd Regional Conference on Engineering Education (RCEE), Persada Johor International Convention Centre, Johor Bahru, Malaysia, 2007, pp. 51 – 55.
 - [4] U. Hashim, S. F. Chin, and M. K. Md Arshad, "Low Cost Mask Processing Technology Concept for Large Dimension ISFET Fabrication," in *Regional Symposium on Microelectronics (RSM) 2007*, Penang, Malaysia, 2007, pp. 150-152.

- [5] U. Hashim, S. F. Chin, M. K. Md Arshad, K. Abdul Rahman, and M. F. Mohd Yusof, "CMOS Based Sensors Research at UniMAP: CMOS ISFET," in *Malaysia Japan International Symposium on Advanced Technology (MJISAT) 2007*, Kuala Lumpur, Malaysia, 2007, pp. 345-347.
- U. Hashim, M. K. Md Arshad, and S. F. Chin, "Development of CISFET Based Biosensor for Biomedical Applications," in *International Symposium on Olfaction and Electronic Noses (ISOEN)*, St. Peterburgs, Russia, 2007, pp. 136-137.
- [7] U. Hashim, M. K. Md Arshad, and S. F. Chin, "Modelling of Metal-Insulator-Semiconductor for Silicon Nitride ISFET Fabrication," in 2nd Malaysian Technical Universities Conference on Engineering and Technology 2008 (MUCET), Kangar, Perlis, Malaysia, 2008, pp. 94-96.

U. Hashim, M. K. Md Arshad, and S. F. Chin, "Silicon Nitride Gate ISFET
Fabrication Based on Four Mask Layers using Standard MOSFET
Technology," in 2008 IEEE International Conference on Semiconductor
Electronics (ICSE), Malaysia, 2008, pp. 578-580.

[9] U. Hashim, S. F. Chin, and S. Sakrani, "Application of Synopsys' Taurus TCAD in Developing CMOS Fabrication Process Modules," *International Journal of Nanoelectronics and Materials*, vol. 2, pp. 1-10, 2009.

List of Awards

copyright

- 1. Research and Innovation Awards 2009 Gold Medalist
- 2. BioInno Awards 2009 Silver Medalist
- 3. PECIPTA 2009 **Silver** Medalist
- 4. Malaysia Invention and Innovation Awards 2009 **Silver** Medalist
- 5. BioInno Awards 2008 Bronze Medalist
- 6. Research and Innovation Awards 2008 Bronze Medalist