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Sifat-Sifat Mekanikal dan Terma Biokomposit Polietilena Kitar Semula Terisi 

Kitosan 
 
 

ABSTRAK 
 
 
Kajian ini difokuskan untuk menyelidiki penggunaan kitosan biopolimer ke atas sifat-
sifat polietilena kitar semula. Kesan kandungan kitosan biokomposit polietilena kitar 
semula ke atas sifat-sifat mekanikal, terma, penyerapan air dan morfologi telah dikaji. 
Kitosan dicampurkan dengan polietilena kitar semula menggunakan pencampur bilah-Z 
pada suhu 180°C dan kelajuan rotor 50 rpm. Keputusan menunjukkan dengan 
peningkatan pembebanan kitosan, kekuatan tensil, modulus Young dan penyerapan air 
meningkat tetapi pemanjangan pada takat putus bagi biokomposit polietilena kitar 
semula terisi kitosan berkurang. Kajian morfologi menunjukkan bahawa pembebanan 
pengisi yang lebih tinggi menghasilkan penyebaran kitosan lebih baik pada matrik. 
Penghabluran biokomposit meningkat dengan semakin meningkatnya pembebanan 
kitosan. Kehadiran α-metakrilosipropiltrimetoksilana (Silana A-174) telah 
meningkatkan kekuatan tensil, modulus Young, penghabluran dan mengurangkan 
pemanjangan pada takat putus dan penyerapan air biokomposit polietilena kitar 
semula/kitosan. Mikrograf SEM menunjukkan interaksi antaramuka yang lebih baik 
antara kitosan dan polietilena kitar semula. Kesan maleik anhidrida-cantuman-
polietilena (MAPE) sebagai agen pengserasi meningkatkan kekuatan tensil dan 
modulus Young tetapi pemanjangan pada takat putus dan penyerapan air berkurang. 
Biokomposit dengan agen pengserasi menunjukkan penghabluran yang tinggi dan 
meningkatkan pelekatan pengisi dan matrik. Biokomposit dengan MAPE dan silana 
menunjukkan kekuatan tensil, modulus Young dan penghabluran yang lebih tinggi 
berbanding biokomposit tanpa MAPE dan silana di mana pemanjangan pada takat 
putus dan penyerapan air lebih rendah. Peningkatan sifat-sifat tensil disokong oleh 
kajian morfologi. Penambahan eko-rosotan PD 04 yang dikomersialkan sebagai bahan 
penambah dalam biokomposit polietilena kitar semula/kitosan telah meningkatkan 
kekuatan tensil dan modulus Young dan mengurangkan pemanjangan pada takat putus.  
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Mechanical and Thermal Properties of Chitosan Filled Recycled Polyethylene 

Biocomposites 
 
 

ABSTRACT 
 
 
The research was focused to investigate the utilization of chitosan biopolymer on 
properties of recycled polyethylene (RPE). The effect of chitosan loading of RPE 
biocomposites on mechanical properties, thermal properties, water absorption and 
morphology were studied. Chitosan was compounded with RPE using Z-blade mixer at 
processing temperature 180°C and rotor speed 50 rpm. The results show that the 
increasing chitosan loading increased the tensile strength, Young’s modulus and water 
absorption but decreased the elongation at break of RPE/chitosan biocomposites. The 
morphology study show the higher filler loading exhibit better dispersion of chitosan in 
matrix. The crystallinity of the biocomposites increased with increasing chitosan 
loading. The presence of α-methacryloxypropyltrimethoxysilane (Silane A-174) have 
increase the tensile strength, Young’s modulus, crystallinity and decreased the 
elongation at break and water absorption of RPE/chitosan biocomposites. The SEM 
micrograph show the better interfacial interaction between chitosan and RPE. The 
effect maleic anhydride-grafted-polyethylene (MAPE) as compatibilizer improved the 
tensile strength and Young’s modulus but elongation at break and water absorption 
decrease. The compatibilized biocomposites indicates higher crystallinity and enhanced 
the adhesion of filler and matrix. The biocomposites with MAPE and silane show 
higher tensile strength, Young’s modulus and crystallinity compared to the 
biocomposites without MAPE and silane, whereas lower elongation at break and water 
absorption. The improvement of tensile properties was supported by morphology 
studied. The addition of commercialized eco-degradant PD 04 as additive in 
RPE/chitosan biocomposites was increased the tensile strength, Young’s modulus and 
reduced the elongation at break.  
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 1

CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Research Background 

 

 Polymer composites have been subjected to increase interest, study, and 

utilization for some decades. The interest arose toward polymer composites filled with 

natural organic fillers, especially in conjunction with recycled and/or recyclable 

polymer matrices. These class of composites (sometimes indicated as "green 

composites") shows other interesting features, certainly concerns the costs issues, 

which are quite reduced since natural organic fillers are usually extracted from wastes 

(La Mantia & Morreale, 2006). Currently, there is considerable concern about materials 

‘running out’, and a renewed intent in conserving natural resources and increasing 

recycling. Also as landfill space runs out, recycling becomes increasingly attractive.  

 The amount of plastic waste increases as the production of polymeric materials 

grows dynamically and their application is wider. Managing the plastic waste is one of 

the challenges faced by today’s world. It is stimulated by two basic factors: 

1) Unconditional need to protect the natural environment being more and more 

contaminated, with plastics constituting over 10% of total waste and 

2) Inevitable running out of natural resources of our planet which include the 

primary source for plastics (La Mantia, 2002). 
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 2

 There are numerous applications for blown film but a very high percentage of 

film is used in commodity applications packaging and bags. These products require a 

combination of performance, processing and cost that make polyethylene and ideal 

polymer for most application. Polyethylene is lightweight, water resistant, has a good 

balance of strength and flexibility and can provide some clarity, easy to extrude and 

heat-seal.  

Synthetic plastics such as polystyrene, polypropylene, polyurethane, 

polyethylene and polylactides are used in daily life in food industry, biomedical field 

and agriculture. However, some of these polymers have disadvantages in such 

applications, i.e. poor biocompatibility and release of acidic degradation products. A 

heavy environmental pollution accompanies their uses, because they need hundreds of 

years to degrade, and the disposal of waste plastics has become a serious problem. 

Biodegradable materials used as alternative to the petroleum-derived plastics. The 

natural polymers have undergone reevaluation regarding their ability to biodegrade. 

Natural biopolymers including starch, cellulose and chitosan were tested, alone or 

combined with synthetic polymers, for the possibility to form a fully or partially 

biodegradable film. Most of the naturally occurring polysaccharide, e.g. cellulose, 

dextran, pectin, alginic acid, agar, agarose and carragenans, are neutral or acidic in 

nature, whereas chitin and chitosan are examples of highly basic polysaccharide 

(Guohua et al., 2006; Eldin et al., 2008; Sakurai et al., 2000; Majeti & Kumar, 2000). 

 The increasing demand for plastic or polymer products nowadays, a substantial 

growing percentage of municipal waste streams and poses environmental challenges to 

our country. While finding substitution material for plastic, this could involve a great 

cost and effort as it is much anticipated that used plastic can be recycled again and 

reused as their original product to prevent the waste of potentially useful materials, 
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 3

reduces the consumption of raw materials and reduces energy usage. Therefore studies 

on recycled plastic are very important because it will help to decrease the amount of 

waste. Thermoplastics are polymers that soften upon exposure to heat and return to 

their original condition at room temperature. Because thermoplastics can easily be 

shaped and molded into various products such as bottles, jugs, and plastic films, they 

are ideal for packaging. Moreover, virtually all thermoplastics are recyclable (melted 

and reused as raw materials for production of new products), although separation poses 

some practical limitations for certain products. 

 A number of technologies are available for recovering and recycling plastics. 

Some are currently in use by industry and capable of processing large quantities of 

material in a cost-effective manner, whilst others currently exist only in laboratories. 

Plastic recycling is an area that is constantly developing to try to meet the often 

competing demands of legislation, market forces and environmental pressure. The 

inter-relationship is complex and is illustrated in Figure 1.1. Recycled plastics are used 

in the same market in which they originated. They replace and compete against virgin 

materials. The price recyclate can command will depend on both the price of the virgin 

materials and the quality of the recyclate. The price of virgin materials can vary greatly 

as it is linked to both oil prices and supply and demand within the market. This in turn 

means that the price that recyclate can command varies greatly. 
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 4

Figure 1.1: Interrelationships affecting recycling activity 

 

 Environmental pressure may create a demand from the consumer for recycled 

goods. By creating such a market, a manufacturer can see a profit to be made, and will 

therefore begin to produce and sell recycled goods. Environmental pressure may also 

result in legislation forcing manufacturers to use recycled materials. In this case, a 

market may not exist already and this legislation will impact upon the ‘natural’ market 

force. The result may less be profitable and require subsidies to kick-start such activity. 

For long-term growth however, the activity must be self-supporting. 

 A fully sustainable infrastructure for the recycling and recovery of plastics is 

required if the vast quantities of plastic material available are to be diverted from 

landfill. However, this will occur only when the demand is created for the end product 

materials and it is economically viable to recycle them. Currently, this has meant that 

recycling activities need to be subsidized if they are not commercially profitable. 

Therefore it is paramount that the plastic industry continues to educate the public and 

potential recyclate users in order to create and develop the supply and demand for these 

materials (Goodship, 2001). 

 Chitosan is biopolymers derived from chitin and cellulose, respectively, which 

are very common natural polysaccharides present in the environment. Chitosan is 

LEGISLATION MARKET 
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  ENVIRONMENTAL 
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natural family biopolymer, biodegradable, non toxic as well as low-cost materials. 

Therefore, these biopolymers are extensively used in many scientific and technological 

applications such as medicine, pharmacology, biotechnology textile and food industry, 

photographic films, as well as fiber and plastic applications. A tremendous awareness 

of the suitability of using natural biopolymers for diversified applications in life science 

is increasing. Biopolymers are polymers that are biodegradable. The input materials for 

the production of these polymers may be either renewable (based on agricultural plant 

or animal products) or synthetic. Natural biopolymers have several advantages, such as 

availability from replenishable agricultural or marine food resources, biocompatibility, 

biodegradability, therefore leading to ecological safety and the possibility of preparing 

a variety of chemically or enzymatically modified derivatives for specific end uses. 

Polysaccharides, as a class of natural macromolecules, have the tendency to be 

extremely bioactive and are generally derived from agricultural feedstock or crustacean 

shell wastes. Cellulose, starch, pectin, etc. are the biopolymers derived from the former, 

while chitin and chitosan are derived from the latter (Prashanth & Tharanathan, 2007). 

 The most important issue associated with these composites is the interfacial 

adhesion between the natural reinforcing fillers and matrix polymers. In order to obtain 

good properties by improving the compatibility between two materials having different 

properties, reinforcing fillers are used after chemical modification. In other words, 

chemical modification is performed to overcome the incompatibility between the 

hydrophilic lignocellulosic material and the hydrophobic matrix polymer. This results 

in poor adhesion and prevents the reinforcing filler from acting effectively within the 

composite. In order to solve these problems, studies have been performed on surface 

modification or treatment using a compatibilizing agent for the purpose of making the 

polyolefin chain hydrophilic. The strong interfacial bonding strength obtained by 
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improving the compatibility between the hydrophilic filler and hydrophobic matrix 

polymer can improve the physical, mechanical and thermal properties of the composite 

system (Yang et al., 2007a). 

   

1.2 Objectives of Study  

 

The research is emphasized the utilization of chitosan as biopolymer in recycled 

polyethylene (RPE) biocomposites on properties. The objectives of study include: 

1) To determine the effect of chitosan loading on mechanical properties, thermal 

properties, water absorption and morphology of recycled polyethylene 

biocomposites. 

2) To investigate the effect of coupling agent, compatibilizer and both on 

properties of RPE/chitosan biocomposites. 

3) To assess the effect of eco-degradant on properties of RPE/chitosan 

biocomposites. 

 

Several testing had been done to investigate the properties of the biocomposites 

such as tensile test, water absorption, morphology studies and thermal properties. 

Tensile test was performed to measure tensile strength, elongation at break and 

Young’s modulus for each composition of the biocomposites. Water absorption was 

determined does it is necessary for end use applications of biocomposites in 

surrounding. Studies of the morphology of the tensile fracture surface of the 

biocomposites were carried out by using a scanning electron microscope (SEM). The 

thermal properties of biocomposites were investigated by differential scanning 

calorimetric (DSC). 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

2.1 Polymer Composites 

 

A composite material is a materials system composed of a suitably arranged 

mixture or combination of two or more micro- or macroconstituents with an interface 

separating them that differ in form and chemical composition and are essentially 

insoluble in each other. The engineering importance of a composite material is that two 

or more distinctly different materials combine to form a composite material that 

possesses properties that are superior, or important in some other manner, to the 

properties of the individual components. The incorporation of these materials results in 

improved, but possibly anistropic, mechanical and thermal properties. Newer materials 

or composites are being developed to reduce the stress to the environment (Smith & 

Hashemi, 2006; Jacobson et al., 1995). 

Thus composites are those materials formed by aligning extremely strong and 

stiff constituents such as fibers and particulates in a binder called matrix. The materials 

in this class have exceptional mechanical properties. One of the components is that 

accommodate stress to incorporate component called reinforcing phase and provide a 

strong bond called matrix. The matrix or binder (organic or inorganic) maintains the 

position and orientation of the reinforcement. Polymers, ceramic and metals have found 

application as matrix materials. The matrix is responsible for transferring the load from 

the matrix to the reinforcement, for distributing the stress among the reinforcement 
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