Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/77199
Full metadata record
DC FieldValueLanguage
dc.creatorHasimah, Ali-
dc.date2016-
dc.date.accessioned2022-11-25T01:10:29Z-
dc.date.available2022-11-25T01:10:29Z-
dc.identifier.urihttp://dspace.unimap.edu.my:80/xmlui/handle/123456789/77199-
dc.descriptionDoctor of Philosophy in Mechatronic Engineeringen_US
dc.description.abstractOver the last decades, facial emotion recognition has received a significant interest among researchers in areas of computer vision, pattern recognition and its related field. The increasing applications of facial emotion recognition have shown a sizeable impact in many areas ranging from psychology to human-computer interaction (HCI). Although facial emotion recognition has achieved a certain level of success, however its performance is far from human perception. Many approaches have been constantly proposed in the literature. In fact, the ability of facial emotion recognition to operate in fully automated with high accuracy remains challenging due to various problems such as intra-class variations, inter-class similarities and subtle changes of facial features. The adhered problem is further hampered as physiognomies of faces with respect to age, ethnicity and gender, thus increase the difficulties of recognizing the facial emotion. In order to resolve this problem, this thesis aims to develop nonlinear features extraction techniques of using Higher Order Spectra (HOS) and Empirical Mode Decomposition (EMD) separately in recognizing the seven facial emotions (anger, disgust, fear, happiness, neutral, sadness and surprise) from static images. A pre-processing step of isolating face region from different background was first employed by means of face detection. The 2-D facial image was then projected into 1-D facial signal by successive projection via Radon transform. Radon transform is translation and rotation invariant, hence preserves the variations in pixel intensities. The facial signal that describes the expression was extracted using HOS and EMD to obtain a set of significant features. In HOS framework, the third order statistic or bispectrum that captures contour (shape) and texture information was applied on facial signal. In this work, a new set of bispectral features was used to characterize the distinctive features of seven classes of emotion. While, in EMD framework, the facial signal was decomposed using EMD to produce a small set of intrinsic mode functions (IMFs) via sifting process. The IMF features which exhibit the unique pattern were used to differentiate the facial emotions.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.rightsUniversiti Malaysia Perlis (UniMAP)en_US
dc.subjectFacial expressionen_US
dc.subjectEmotion recognitionen_US
dc.subjectPattern recognition systemsen_US
dc.subjectHuman-computer interactionen_US
dc.titleInvestigation of nonlinear feature extraction techniques for facial emotion recognitionen_US
dc.typeThesisen_US
dc.contributor.advisorHariharan, Muthusamy, Dr.-
dc.publisher.departmentSchool of Mechatronic Engineeringen_US
Appears in Collections:School of Mechatronic Engineering (Theses)

Files in This Item:
File Description SizeFormat 
Page 1-24.pdfAccess is limited to UniMAP community.184.77 kBAdobe PDFView/Open
Full text.pdfThis item is protected by original copyright.6.03 MBAdobe PDFView/Open
Hasimah Ali.pdfDeclaration Form250.19 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.