Please use this identifier to cite or link to this item:
http://dspace.unimap.edu.my:80/xmlui/handle/123456789/77199
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Hasimah, Ali | - |
dc.date | 2016 | - |
dc.date.accessioned | 2022-11-25T01:10:29Z | - |
dc.date.available | 2022-11-25T01:10:29Z | - |
dc.identifier.uri | http://dspace.unimap.edu.my:80/xmlui/handle/123456789/77199 | - |
dc.description | Doctor of Philosophy in Mechatronic Engineering | en_US |
dc.description.abstract | Over the last decades, facial emotion recognition has received a significant interest among researchers in areas of computer vision, pattern recognition and its related field. The increasing applications of facial emotion recognition have shown a sizeable impact in many areas ranging from psychology to human-computer interaction (HCI). Although facial emotion recognition has achieved a certain level of success, however its performance is far from human perception. Many approaches have been constantly proposed in the literature. In fact, the ability of facial emotion recognition to operate in fully automated with high accuracy remains challenging due to various problems such as intra-class variations, inter-class similarities and subtle changes of facial features. The adhered problem is further hampered as physiognomies of faces with respect to age, ethnicity and gender, thus increase the difficulties of recognizing the facial emotion. In order to resolve this problem, this thesis aims to develop nonlinear features extraction techniques of using Higher Order Spectra (HOS) and Empirical Mode Decomposition (EMD) separately in recognizing the seven facial emotions (anger, disgust, fear, happiness, neutral, sadness and surprise) from static images. A pre-processing step of isolating face region from different background was first employed by means of face detection. The 2-D facial image was then projected into 1-D facial signal by successive projection via Radon transform. Radon transform is translation and rotation invariant, hence preserves the variations in pixel intensities. The facial signal that describes the expression was extracted using HOS and EMD to obtain a set of significant features. In HOS framework, the third order statistic or bispectrum that captures contour (shape) and texture information was applied on facial signal. In this work, a new set of bispectral features was used to characterize the distinctive features of seven classes of emotion. While, in EMD framework, the facial signal was decomposed using EMD to produce a small set of intrinsic mode functions (IMFs) via sifting process. The IMF features which exhibit the unique pattern were used to differentiate the facial emotions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Universiti Malaysia Perlis (UniMAP) | en_US |
dc.rights | Universiti Malaysia Perlis (UniMAP) | en_US |
dc.subject | Facial expression | en_US |
dc.subject | Emotion recognition | en_US |
dc.subject | Pattern recognition systems | en_US |
dc.subject | Human-computer interaction | en_US |
dc.title | Investigation of nonlinear feature extraction techniques for facial emotion recognition | en_US |
dc.type | Thesis | en_US |
dc.contributor.advisor | Hariharan, Muthusamy, Dr. | - |
dc.publisher.department | School of Mechatronic Engineering | en_US |
Appears in Collections: | School of Mechatronic Engineering (Theses) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Page 1-24.pdf | Access is limited to UniMAP community. | 184.77 kB | Adobe PDF | View/Open |
Full text.pdf | This item is protected by original copyright. | 6.03 MB | Adobe PDF | View/Open |
Hasimah Ali.pdf | Declaration Form | 250.19 kB | Adobe PDF | View/Open |
Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.