Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/7394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHema, Chengalvarayan Radhakrishnamurthy-
dc.contributor.authorPaulraj, Murugesapandian-
dc.contributor.authorSazali, Yaacob-
dc.contributor.authorAbd Hamid, Adom-
dc.contributor.authorRamachandran, Nagarajan-
dc.date.accessioned2009-12-10T03:45:53Z-
dc.date.available2009-12-10T03:45:53Z-
dc.date.issued2008-12-01-
dc.identifier.citationp.1-4en_US
dc.identifier.isbn978-1-4244-2315-6-
dc.identifier.urihttp://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4786683-
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/7394-
dc.descriptionLink to publisher's homepage at http://ieeexplore.ieee.orgen_US
dc.description.abstractMotor imagery is the mental simulation of a motor act that includes preparation for movement and mental operations of motor representations implicitly or explicitly. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through a brain machine interfaces (BMI). In other words a BMI can be used to rehabilitate people suffering from neuromuscular disorders as a means of communication or control. This paper presents a novel approach in the design of a four state BMI using two electrodes. The BMI is designed using Neural Network Classifiers. The performance of the BMI is evaluated using two network architectures. The performance of the proposed algorithm has an average classification efficiency of 93.5%.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineering (IEEE)en_US
dc.relation.ispartofseriesProceedings of the International Conference on Electronic Design (ICED 2008)en_US
dc.subjectBiology computingen_US
dc.subjectBrain-computer interfacesen_US
dc.subjectElectroencephalographyen_US
dc.subjectMedical image processingen_US
dc.subjectNeuromuscular stimulationen_US
dc.subjectBrain machine interfacesen_US
dc.subjectEEGen_US
dc.titleRecognition of motor imagery of hand movements for a BMI using PCA featuresen_US
dc.typeWorking Paperen_US
dc.contributor.urlhema@unimap.edu.myen_US
Appears in Collections:Conference Papers
Sazali Yaacob, Prof. Dr.
Ramachandran, Nagarajan, Prof. Dr.
Abdul Hamid Adom, Prof. Dr.
Paulraj Murugesa Pandiyan, Assoc. Prof. Dr.

Files in This Item:
File Description SizeFormat 
Abstract.pdf7.17 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.