Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/7351
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHema, Chengalvarayan Radhakrishnamurthy-
dc.contributor.authorPaulraj, Murugesapandian-
dc.contributor.authorSazali, Yaacob-
dc.contributor.authorAbdul Hamid, Adom-
dc.contributor.authorRamachandran, Nagarajan-
dc.date.accessioned2009-11-19T13:51:56Z-
dc.date.available2009-11-19T13:51:56Z-
dc.date.issued2009-03-06-
dc.identifier.citationp.37-38en_US
dc.identifier.isbn978-1-4244-4151-8-
dc.identifier.urihttp://ieeexplore.ieee.org/xpls/abs_all.jsp?=&arnumber=5069183-
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/7351-
dc.descriptionLink to publisher's homepage at http://ieeexplore.ieee.orgen_US
dc.description.abstractThis work investigates how signal representations affect the performance of a motor imagery recognition system, specifically we investigate on recognition accuracy and computational time of a brain machine interface designed using motor imagery. Experiments show that the signal length should not be larger than a critical range for good recognition accuracy. The results presented here is a part of our work on the design and development of a brain machine interface to operate a wheelchair. EEG motor imagery signals recorded from the motor cortex area using non-invasive electrodes, are used for recognition of four tasks namely, left, right, forward and stop. Experiments are conducted for 12 signal representations from signal lengths varying from 3s to 0.25s. From the results it is observed that good recognition accuracies (93.2% -94.2%) are obtainable for 2s to 3s signal representations.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineering (IEEE)en_US
dc.relation.ispartofseriesProceedings of the 5th International Colloquium on Signal Processing & Its Applications (CSPA 2009)en_US
dc.subjectBrain-computer interfacesen_US
dc.subjectMedical signal processingen_US
dc.subjectElectroencephalographyen_US
dc.subjectComputational neuroscienceen_US
dc.subjectBrain Machine Interfaces (BMI)en_US
dc.titleBrain machine interface: motor imagery recognition with different signal length representationsen_US
dc.typeWorking Paperen_US
Appears in Collections:Conference Papers
Sazali Yaacob, Prof. Dr.
Ramachandran, Nagarajan, Prof. Dr.
Abdul Hamid Adom, Prof. Dr.
Paulraj Murugesa Pandiyan, Assoc. Prof. Dr.

Files in This Item:
File Description SizeFormat 
Abstract.pdf7.72 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.