Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/7345
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHadi, H. M.-
dc.contributor.authorMohd Yusoff, Mashor-
dc.contributor.authorMohamed, M. S.-
dc.contributor.authorTat, K. B.-
dc.date.accessioned2009-11-19T10:26:02Z-
dc.date.available2009-11-19T10:26:02Z-
dc.date.issued2008-
dc.identifier.citationp.177-180en_US
dc.identifier.urihttp://ieeexplore.ieee.org/xpls/abs_all.jsp?=&arnumber=4723403-
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/7345-
dc.descriptionLink to publisher's homepage at http://ieeexplore.ieee.orgen_US
dc.description.abstractA heart sound feature extraction and classification method has been developed. It used the discrete wavelet decomposition and reconstruction to produce the envelopes of details of the signals for further extracting the features. Some statistical variables were extracted from the processed signals and used as the features for the heart sounds classification. A Multilayer Perceptron Neural Network has been used for classification of heart sounds. The performance of the proposed method has been evaluated using 250 cardiac periods from heart sound simulator. The proposed technique produced high classification rate of 92% correct classification.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineering (IEEE)en_US
dc.relation.ispartofseries5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2008)en_US
dc.subjectLevenburg-marquardten_US
dc.subjectNeuralen_US
dc.subjectWaveletsen_US
dc.subjectMultilayer perceptronsen_US
dc.subjectFeature extractionen_US
dc.subjectAcoustic signal processingen_US
dc.subjectCardiologyen_US
dc.subjectNetworken_US
dc.titleClassification of heart sounds using wavelets and neural networksen_US
dc.typeWorking Paperen_US
Appears in Collections:Conference Papers
Mohd Yusoff Mashor, Prof. Dr.

Files in This Item:
File Description SizeFormat 
abstract.pdf7.05 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.