Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/7136
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPuteh, Saad-
dc.contributor.authorHasnah, Ahmad-
dc.contributor.authorYasmin, Yacob-
dc.contributor.authorRafikha Aliana, A. Raof-
dc.contributor.authorSabarina, Ismail-
dc.date.accessioned2009-09-03T03:32:34Z-
dc.date.available2009-09-03T03:32:34Z-
dc.date.issued2005-05-14-
dc.identifier.citationp.37-41en_US
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/7136-
dc.descriptionOrganized by Kolej Universiti Kejuruteraan Utara Malaysia (KUKUM), 14th - 15th May 2005 at Putra Palace Hotel, Kangar. Perlis.en_US
dc.description.abstractNondestructive detection method is vital in quality, safety and integrity assurance during fruits and vegetables post harvest. X-ray imaging technology has been proven to be one of the successful nondestructive methods ever to be applied in detecting diseases and defects in agricultural products. In this research, infested Harum Manis mango fruits detection and quality classification will be done by integrating X-ray imaging techniques and Artificial Immune Systems (AIS). The classification is made by applying the AIS self and nonself recognition process unto the Harum Manis mango X-ray images. The output of this study is the proposed automatic nondestructive classification system of Harum Manis mango.en_US
dc.language.isoenen_US
dc.publisherKolej Universiti Kejuruteraan Utara Malaysiaen_US
dc.relation.ispartofseriesProceedings of the 1st International Workshop on Artificial Life and Robotics (2005)en_US
dc.subjectArtificial Immune systemsen_US
dc.subjectNondestructive detection methoden_US
dc.subjectSelf and nonself recognitionen_US
dc.subjectChemical detectorsen_US
dc.subjectNondestructive testingen_US
dc.subjectX-ray imaging technologyen_US
dc.subjectImaging systemsen_US
dc.subjectArtificial intelligenceen_US
dc.titleAutomatic classification of Weevil-Infested Harum Manis mangoes using Artificial Immune Systems approachen_US
dc.typeWorking Paperen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
Automatic Classification of Weevil-Infested Harum.pdf141.04 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.