Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/6763
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaulraj, Murugesapandian-
dc.contributor.authorHema, Chengalvarayan Radhakrishnamurthy-
dc.contributor.authorRamachandran, Nagarajan-
dc.contributor.authorSazali, Yaacob-
dc.contributor.authorAbdul Hamid, Adom-
dc.date.accessioned2009-08-10T03:47:05Z-
dc.date.available2009-08-10T03:47:05Z-
dc.date.issued2007-12-
dc.identifier.citationp.1-5en_US
dc.identifier.isbn978-1-4244-1469-7-
dc.identifier.urihttp://ieeexplore.ieee.org/xpls/abs_all.jsp?=&arnumber=4451377-
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/6763-
dc.descriptionLink to publisher's homepage at http://ieeexplore.ieee.orgen_US
dc.description.abstractBrain Machine Interfaces use the cognitive abilities of patients with neuromuscular disorders to restore communication and motor functions. At present, only EEG and related methods, which have relatively short time constants, can function in most environments, they also require relatively simple and inexpensive equipment. In this paper we propose a mental task classification algorithm using a Particle Swarm Optimization (PSO) for a Radial basis Neural Network. Features are extracted from EEG signals that are recorded during five mental tasks, namely baseline-resting, mathematical multiplication, geometric figure rotation, letter composing and visual counting. PCA features extracted from the task signals are used the neural net to classify different combinations of two mental tasks. Results obtained show average classification rates ranging from % to %.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineering (IEEE)en_US
dc.relation.ispartofseries5th Student Conference on Research and Development (SCORED 2007)en_US
dc.subjectEEG signal processingen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectPCAen_US
dc.subjectRadial basis function neural networksen_US
dc.subjectMedical computingen_US
dc.subjectNeurophysiologyen_US
dc.subjectElectroencephalographyen_US
dc.titleEEG classification using radial basis PSO neural network for brain machine interfacesen_US
dc.typeArticleen_US
Appears in Collections:School of Mechatronic Engineering (Articles)
Sazali Yaacob, Prof. Dr.
Ramachandran, Nagarajan, Prof. Dr.
Abdul Hamid Adom, Prof. Dr.
Paulraj Murugesa Pandiyan, Assoc. Prof. Dr.

Files in This Item:
File Description SizeFormat 
Abstract.pdf7.22 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.