Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/63564
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThulfiqar Hussein, Mandeel-
dc.contributor.authorMuhammad Imran, Ahmad-
dc.contributor.authorMohd Nazrin, Md Isa-
dc.contributor.authorRuzelita, Ngadiran-
dc.date.accessioned2019-12-03T04:33:25Z-
dc.date.available2019-12-03T04:33:25Z-
dc.date.issued2016-
dc.identifier.citationLink to publisher's homepage at http://journal.utem.edu.my, vol.8(4), 2016, 41-46.en_US
dc.identifier.issn2180–1843-
dc.identifier.issn2289-8131 (online)-
dc.identifier.urihttp://dspace.unimap.edu.my:80/xmlui/handle/123456789/63564-
dc.descriptionLink to publisher's homepage at http://journal.utem.edu.myen_US
dc.description.abstractThis paper presents a human identification system using eigen-palm images. The proposed method consists of three main stages. The preprocessing stage computes the palmprint images to capture important information and produce a better representation of palmprint image data. The second stage extracts significant features from palmprint images and reduces the dimension of the palmprint image data by applying the principal component analysis (PCA) technique. Low-dimensional features in the feature space are assumed to be Gaussian. Thus, the Euclidean distance classifier can be used in the matching process to compare test image with the template. The proposed method is tested using a benchmark PolyU dataset. Experimental results show that the best achieved recognition rate is 97.5% when the palmprint image is represented using 34 PCA coefficients. Moreover, the Euclidean distance classifier is implemented on a digital signal processor (DSP) board. Implementing the proposed algorithm using the DSP processor achieves better performance in computation time compared with a personal computer-based systemen_US
dc.language.isoenen_US
dc.publisherUniversiti Teknikal Malaysia Melakaen_US
dc.subjectBiometricsen_US
dc.subjectPalmprint recognitionen_US
dc.subjectPrincipal component analysisen_US
dc.subjectFeature extractionen_US
dc.titlePalmprint recognition using principle component analysis implemented on TMS320C6713 DSP processoren_US
dc.typeArticleen_US
dc.identifier.urljournal.utem.edu.my/index.php/jtec/article/view/1169-
dc.contributor.urlm.imran@unimap.edu.myen_US
Appears in Collections:School of Computer and Communication Engineering (Articles)

Files in This Item:
File Description SizeFormat 
Palmprint recognition using principle component analysis implemented on TMS320C6713 DSP processor.pdfAccess is limited to UniMAP community.862.4 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.