Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/51453
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBilal, Bisma-
dc.contributor.authorAhmed, Suhaib-
dc.contributor.authorKakkar, Vipan-
dc.date.accessioned2018-02-07T03:59:37Z-
dc.date.available2018-02-07T03:59:37Z-
dc.date.issued2018-01-
dc.identifier.citationInternational Journal of Nanoelectronics and Materials, vol.11 (1), 2018, pages 87-98en_US
dc.identifier.issn1985-5761 (Printed)-
dc.identifier.issn1997-4434 (Online)-
dc.identifier.urihttp://dspace.unimap.edu.my:80/xmlui/handle/123456789/51453-
dc.descriptionLink to publisher's homepage at http://ijneam.unimap.edu.my/en_US
dc.description.abstractQuantum Dot Cellular Automata (QCA) is a newly developed paradigm for digital design, which holds the potential as possible alternative to the present Complementary Metal Oxide Semi‐Conductor (CMOS) technology. After surviving for nearly five decades, the scaling of CMOS is finally reaching its limits. The asperities are not only seen from the physical and technological viewpoint but also from the material and economical perspectives. With no more scaling possible, there is a need to look for promising alternatives to continue with the nano size/scale computations and to hold on to the Moore’s law. QCA offers a breakthrough required for the fulfilment of certain lacking aspects of CMOS technology in the nano regime. QCA is a technology that involves no current transfer but works on electronic interaction between the cells. The QCA cell basically consists of quantum dots or metal islands separated by certain distance and the entire transmission of information occurs via the interaction between the electrons localized in the potential wells. Since the technology is new and in a premature phase, a huge scope lies ahead of the researchers to investigate and make QCA design a reality. In this paper the QCA technology is reviewed with sufficient focus on basic concepts, implementations and information flow. The various building blocks in QCA are discussed and their working on the basis of physical laws is explained. This paper forms the basis for further complex digital designing in QCA.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.subjectCellular Automataen_US
dc.subjectCMOSen_US
dc.subjectNanotechnologyen_US
dc.subjectLow Poweren_US
dc.subjectPipeliningen_US
dc.subjectQCAen_US
dc.titleQuantum Dot Cellular Automata: A New Paradigm for Digital Designen_US
dc.typeArticleen_US
dc.contributor.urlsabatt@outlook.comen_US
Appears in Collections:International Journal of Nanoelectronics and Materials (IJNeaM)

Files in This Item:
File Description SizeFormat 
Quantum Dot Cellular Automata.pdf1.1 MBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.