Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/35668
Title: Classification of driver drowsiness level using wireless EEG
Other Titles: Badania senności kierowcy na podstawie sygnału EEG
Authors: Mousa Kadhim, Wali
Murugappan, Muthusamy, Dr.
R. Badlishah, Ahmad, Prof. Dr.
musawali@yahoo.com
murugappan@unimap.edu.my
badli@unimap.edu.my
Keywords: Discrete Wavelet Transform
EEG
Fast Fourier Transform
Fuzzy inference system
Issue Date: 2013
Publisher: Przegląd Elektrotechniczny
Citation: Przeglad Elektrotechniczny, vol. 89(6), 2013, pages 113-117
Abstract: In this work, wireless Electroencephalogram (EEG) signals are used to classify the driver drowsiness levels (neutral, drowsy, high drowsy and sleep stage1) based on Discrete Wavelet Packet Transform (DWPT). Two statistical features (spectral centroid, and power spectral density) were extracted from four EEG frequency bands (delta, theta, alpha, and beta) using Fast Fourier Transform (FFT). These features are used to classify the driver drowsiness level using three classifiers namely, subtractive fuzzy clustering, probabilistic neural network, and K nearest neighbour. Results of this study indicates that the best average accuracy of 84.41% is achieved using subtractive fuzzy classifier based on power spectral density feature extracted by db4 wavelet function.
Description: Link to publisher's homepage at http://pe.org.pl/
URI: http://pe.org.pl/issue.php?lang=0&num=06/2013
http://dspace.unimap.edu.my:80/dspace/handle/123456789/35668
ISSN: 0033-2097
Appears in Collections:M. Murugappan, Dr.
School of Mechatronic Engineering (Articles)
R. Badlishah Ahmad, Prof. Ir. Ts. Dr.
School of Computer and Communication Engineering (Articles)

Files in This Item:
File Description SizeFormat 
Classification of driver drowsiness level using wireless EEG.pdf403.05 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.