Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/35577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFasahat Ullah, Siddiqui-
dc.contributor.authorNor Ashidi, Mat Isa, Assoc. Prof. Dr.-
dc.contributor.authorAbid, Yahya, Dr.-
dc.date.accessioned2014-06-16T08:29:47Z-
dc.date.available2014-06-16T08:29:47Z-
dc.date.issued2013-
dc.identifier.citationTurkish Journal of Electrical Engineering and Computer Sciences, vol. 21(6), 2013, pages 1801-1819en_US
dc.identifier.issn1300-0632 (P)-
dc.identifier.issn1303-6203 (O)-
dc.identifier.urihttp://mistug.tubitak.gov.tr/bdyim/toc.php?dergi=elk&yilsayi=2013/6-
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/35577-
dc.descriptionLink to publisher's homepage at www.tubitak.gov.tr/enen_US
dc.description.abstractThis paper presents a fuzzy clustering-based technique for image segmentation. Many attempts have been put into practice to increase the conventional fuzzy c-means (FCM) performance. In this paper, the sensitivity of the soft membership function of the FCM algorithm to the outlier is considered and the new exponent operator on the Euclidean distance is implemented in the membership function to improve the outlier rejection characteristics of the FCM. The comparative quantitative and qualitative studies are performed among the conventional k-means (KM), moving KM, and FCM algorithms; the latest state-of-the-art clustering algorithms, namely the adaptive fuzzy moving KM , adaptive fuzzy KM, and new weighted FCM algorithms; and the proposed outlier rejection FCM (ORFCM) algorithm. It is revealed from the experimental results that the ORFCM algorithm outperforms the other clustering algorithms in various evaluation functions.en_US
dc.language.isoenen_US
dc.publisherScientific and Technical Research Council of Turkeyen_US
dc.subjectClusteringen_US
dc.subjectFuzzy c-meansen_US
dc.subjectK-meansen_US
dc.subjectK-meansen_US
dc.subjectOutlieren_US
dc.subjectOutlier rejection fuzzy c-meansen_US
dc.titleOutlier rejection fuzzy c-means (ORFCM) algorithm for image segmentationen_US
dc.typeArticleen_US
dc.contributor.urlashidi@eng.usm.myen_US
dc.contributor.urlabid@unimap.edu.myen_US
Appears in Collections:School of Computer and Communication Engineering (Articles)

Files in This Item:
File Description SizeFormat 
Outlier rejection fuzzy c-means (ORFCM) algorithm for image segmentation.pdf10.73 MBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.