Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/34665
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMurugappan, M., Dr.-
dc.contributor.authorMohd Rizon, Mohamed Juhari-
dc.contributor.authorNagarajan, Ramachandran, Prof. Dr.-
dc.contributor.authorSazali, Yaacob, Prof. Dr.-
dc.contributor.authorIbrahim, Zunaidi-
dc.contributor.authorHazry, Desa, Assoc. Prof. Dr.-
dc.date.accessioned2014-05-23T03:14:12Z-
dc.date.available2014-05-23T03:14:12Z-
dc.date.issued2008-08-
dc.identifier.citationp. 1-7en_US
dc.identifier.isbn978-1-4244-2328-6 (Online)-
dc.identifier.isbn978-1-4244-2327-9 (Print)-
dc.identifier.urihttp://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4631646-
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/34665-
dc.descriptionProceeding of The International Symposium on Information Technology 2008 (ITSim 2008) at Kuala Lumpur, Malaysia on 26 August 2008 through 29 August 2008. Link to publisher's homepage at http://ezproxy.unimap.edu.my:2080/Xplore/dynhome.jspen_US
dc.description.abstractIn recent years, the need and importance of automatically recognizing emotions from EEG signals has grown with increasing role of brain computer interface applications. The detection of fine grained changes in functional state of human brain can be detected using EEG signals when compared to other physiological signals. This paper proposes an emotion recognition system from EEG (Electroencephalogram) signals. The audio-visual induction based acquisition protocol has been designed for acquiring the EEG signals under four emotions (disgust, happy, surprise and fear) for participants. Totally, 6 healthy subjects with an age group of 21–27 using 63 biosensors are used for registering the EEG signal for various emotions. After preprocessing the signals, two different lifting based wavelet transforms (LBWT) are employed to extract the three statistical features for classifying human emotions. In this work, we used Fuzzy C-Means (FCM) clustering for classifying the emotions. Results confirm the possibility of using two different lifting scheme based wavelet transform for assessing the human emotions from EEG signals.en_US
dc.language.isoenen_US
dc.publisherIEEE Conference Publicationsen_US
dc.relation.ispartofseriesProceeding of The International Symposium on Information Technology 2008 (ITSim);-
dc.subjectFace recognitionen_US
dc.subjectHuman emotionsen_US
dc.subjectLifting schemesen_US
dc.subjectBiosensorsen_US
dc.subjectComputer applicationsen_US
dc.titleLifting scheme for human emotion recognition using EEGen_US
dc.typeArticleen_US
dc.identifier.urlhttp://dx.doi.org/10.1109/ITSIM.2008.4631646-
dc.contributor.urlmurugappan@unimap.edu.myen_US
dc.contributor.urlmjuhari@ksu.edu.saen_US
dc.contributor.urlnagarajan@unimap.edu.myen_US
dc.contributor.urls.yaacob@unimap.edu.myen_US
dc.contributor.urlzunaidi@tatiuc.edu.myen_US
dc.contributor.urlhazry@unimap.edu.myen_US
Appears in Collections:M. Murugappan, Dr.
Hazry Desa, Associate Prof.Dr.
Ramachandran, Nagarajan, Prof. Dr.
Sazali Yaacob, Prof. Dr.

Files in This Item:
File Description SizeFormat 
Lifting scheme for human emotion recognition using EEG-abstract.pdf57.87 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.