Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/33854
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIshak, Abdul Azid, Dr.-
dc.contributor.authorLee, Kor Oon-
dc.contributor.authorOng, Kang E.-
dc.contributor.authorSeetharamu, Kankanhally N.-
dc.contributor.authorGhulam, Abdul Quadir, Prof. Dr.-
dc.date.accessioned2014-04-19T17:57:20Z-
dc.date.available2014-04-19T17:57:20Z-
dc.date.issued2005-
dc.identifier.citationKey Engineering Materials, vol. 297-300(1), 2005, pages 96-101en_US
dc.identifier.issn1013-9826-
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/33854-
dc.descriptionLink to publisher's homepage at http://www.ttp.net/en_US
dc.description.abstractAn extensively published and correlated solder joint fatigue life prediction methodology is incorporated by which finite element simulation results are translated into estimated cycles to failure. This study discusses the analysis methodologies as implemented in the ANSYS™ finite element simulation software tool. Finite element models are used to study the effect of temperature cycles on the solder joints of a flip chip ball grid array package. Through finite element simulation, the plastic work or the strain-energy density of the solder joints are determined. Using an established methodology, the plastic work obtained through simulation is translated into solder joint fatigue life [1]. The corresponding results for the solder joint fatigue life are used for parametric studies. Artificial Neural Network (ANN) has been used to consolidate the parametric studiesen_US
dc.language.isoenen_US
dc.publisherTrans Tech Publicationsen_US
dc.subjectArtificial neural networken_US
dc.subjectFinite element simulationen_US
dc.subjectSolder joint reliabilityen_US
dc.titleApplication of artificial neural network for fatigue life predictionen_US
dc.typeArticleen_US
dc.identifier.urlhttp://www.scientific.net/KEM.297-300.96-
dc.identifier.url10.4028/www.scientific.net/KEM.297-300.96-
dc.contributor.urlishak@eng.usm.myen_US
dc.contributor.urlleekoroon@yahoo.comen_US
dc.contributor.urloku337@hotmail.comen_US
dc.contributor.urlknramu@eng.usm.myen_US
dc.contributor.urlgaquadir@unimap.edu.myen_US
Appears in Collections:Ghulam Abdul Quadir, Prof. Dr.

Files in This Item:
File Description SizeFormat 
Application of artificial neural network for fatigue life prediction.pdf120.56 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.