Please use this identifier to cite or link to this item:
http://dspace.unimap.edu.my:80/xmlui/handle/123456789/33550
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Azian Azamimi, Abdullah | - |
dc.contributor.author | Nurlisa, Yusuf | - |
dc.contributor.author | Mohammad Iqbal, Omar@Ye Htut, Assoc. Prof. Dr. | - |
dc.contributor.author | Ammar, Zakaria | - |
dc.contributor.author | Latifah Munirah, Kamarudin | - |
dc.contributor.author | Ali Yeon, Md Shakaff, Prof. Dr. | - |
dc.contributor.author | Abdul Hamid, Adom, Prof. Dr. | - |
dc.contributor.author | Maz Jamilah, Aznan | - |
dc.date.accessioned | 2014-04-09T05:04:04Z | - |
dc.date.available | 2014-04-09T05:04:04Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | International Conference on Advances in Intelligent Systems in Bioinformatics, 2014, pages 27-34 | en_US |
dc.identifier.isbn | 978-94-6252-000-4 | - |
dc.identifier.issn | 1951-6851 | - |
dc.identifier.uri | http://dspace.unimap.edu.my:80/dspace/handle/123456789/33550 | - |
dc.description | Link to publisher's homepage at http://www.atlantis-press.com/ | en_US |
dc.description.abstract | Many diabetic patients eventually develop foot ulcers are at risk for further infection and subsequent amputation if they are not treated promptly. Hence, this study is focused on identifying wild type strain bacteria and standard ATCC bacteria using e-nose which are PEN3 and Cyranose320. Data collected from both e-nose are processed using multivariate classifier such as LDA, KNN, PNN, SVM and RBF. The results indicate that rapid detection of bacteria using e-nose has increased the effectiveness, effi-ciency, reliability and reduced diagnosis time in identifying bacterial species on foot ulcer infection. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Atlantis Press | en_US |
dc.subject | Diabetic | en_US |
dc.subject | Foot ulcer | en_US |
dc.subject | E-nose | en_US |
dc.subject | PEN3 | en_US |
dc.subject | Cyranose320 | en_US |
dc.subject | LDA | en_US |
dc.subject | KNN | en_US |
dc.subject | PNN | en_US |
dc.subject | SVM | en_US |
dc.subject | RBF | en_US |
dc.title | Multivariate prediction model for early detection and classification of bacterial species in diabetic foot ulcers | en_US |
dc.type | Article | en_US |
dc.identifier.url | http://www.atlantis-press.com/php/pub.php?publication=intel-13&frame=http%3A//www.atlantis-press.com/php/paper-details.php%3Ffrom%3Dsession+results%26id%3D11354%26querystr%3Did%253D199 | - |
dc.contributor.url | azamimi@unimap.edu.my | en_US |
dc.contributor.url | iqbalomar@unimap.edu.my | en_US |
dc.contributor.url | ammarzakaria@unimap.edu.my | en_US |
dc.contributor.url | aliyeon@unimap.edu.my | en_US |
dc.contributor.url | abdhamid@unimap.edu.my | en_US |
Appears in Collections: | Azian Azamimi Abdullah Ali Yeon Md Shakaff, Dato' Prof. Dr. Abdul Hamid Adom, Prof. Dr. Mohammad Iqbal Omar@Ye Htut, Assoc. Prof. Dr. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Multivariate prediction model for early detection and classification of bacterial species in diabetic foot ulcers.pdf | 56.32 kB | Adobe PDF | View/Open |
Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.