Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/29361
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRafikha Aliana, A. Raof-
dc.contributor.authorMohd Yusoff, Mashor, Prof. Dr.-
dc.contributor.authorR. Badlishah, Ahmad, Prof. Dr.-
dc.contributor.authorNoor, S. S. M.-
dc.contributor.authorM. A. Abdullah-
dc.contributor.authorM. K. Osman-
dc.date.accessioned2013-10-30T13:59:23Z-
dc.date.available2013-10-30T13:59:23Z-
dc.date.issued2012-06-18-
dc.identifier.citationp. 1098 - 1104en_US
dc.identifier.isbn978-967-5760-11-2-
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/29361-
dc.descriptionThe 2nd International Malaysia-Ireland Joint Symposium on Engineering, Science and Business 2012 (IMiEJS2012) jointly organized by Universiti Malaysia Perlis and Athlone Institute of Technology in collaboration with The Ministry of Higher Education (MOHE) Malaysia, Education Malaysia and Malaysia Postgraduates Student Association Ireland (MyPSI), 18th - 19th June 2012 at Putra World Trade Center (PWTC), Kuala Lumpur, Malaysia.en_US
dc.description.abstractManual screening by light microscopy is the most widely used method for tubercle bacilli detection in the developing country. However, it is a time consuming and labour-intensive process. In this paper, a method using image processing technique and neural network classification has been proposed for automated tubercle bacilli detection in sputum slide images. The method mainly consists of three main stages: image segmentation, feature extraction and identification. Hybrid multilayered perceptron (HMLP) network using modified recursive prediction error training algorithm have been used to perform TB identification. Experimental results demonstrated that the HMLP network achieved the classification accuracy with percentage of 73.9%.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.relation.ispartofseriesProceedings of The 2nd International Malaysia-Ireland Joint Symposium on Engineering, Science and Business 2012 (IMiEJS2012);-
dc.subjectImage processingen_US
dc.subjectClassificationen_US
dc.subjectNeural networken_US
dc.subjectTuberculosisen_US
dc.subjectZiehl-Neelsenen_US
dc.titleDetection of tubercle bacilli in Ziehl-Neelsen stained sputum slide images using Hu’s moment and HMLP networken_US
dc.typeWorking Paperen_US
dc.contributor.urlrafikha@unimap.edu.myen_US
dc.contributor.urlyusoff@unimap.edu.myen_US
Appears in Collections:Conference Papers
Mohd Yusoff Mashor, Prof. Dr.
R. Badlishah Ahmad, Prof. Ir. Ts. Dr.

Files in This Item:
File Description SizeFormat 
pg 1098 - 1104.pdfAccess is limited to UniMAP community408.95 kBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.