Please use this identifier to cite or link to this item: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/21421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIshikawa, Keisuke-
dc.contributor.authorAkita, Junichi-
dc.contributor.authorToda, Masashi-
dc.contributor.authorKondo, Kazuaki-
dc.contributor.authorSakurazawa, Shigeru-
dc.contributor.authorNakamura, Yuichi-
dc.date.accessioned2012-10-18T08:33:43Z-
dc.date.available2012-10-18T08:33:43Z-
dc.date.issued2012-02-27-
dc.identifier.citationp. 362-367en_US
dc.identifier.isbn978-145771989-9-
dc.identifier.urihttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6179039-
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/21421-
dc.descriptionLink to publisher's homepage at http://ieeexplore.ieee.org/en_US
dc.description.abstractFinger motion classification using surface electromyogram (EMG) signals is currently being applied to myoelectric prosthetic hands with methods of pattern classification. It can be used to classify motion with great accuracy under ideal circumstances. However, the precision of classification falling to change the quantity of EMG feature with muscle fatigue has been a problem. We addressed this problem in this study, which was aimed at robustly classifying finger motion against changes in EMG features with muscle fatigue. We tested the changes in EMG features before and after muscle fatigue and propose a robust feature that uses a methods of estimating tension in finger motion by taking muscle fatigue into consideration.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofseriesProceedings of the International Conference on Biomedical Engineering (ICoBE 2012)en_US
dc.subjectSurface-Electromyogram Signals (EMG)en_US
dc.subjectFinger motion classificationen_US
dc.subjectFrequency characteristicsen_US
dc.subjectTension estimateen_US
dc.titleRobust finger motion classification using frequency characteristics of surface electromyogram signalsen_US
dc.typeWorking Paperen_US
dc.contributor.urlg2110005@fun.ac.jpen_US
dc.contributor.urlakita@is.t.kanazawau.ac.jpen_US
dc.contributor.urltoda@fun.ac.jpen_US
dc.contributor.urlkondo@media.kyotou.ac.jpen_US
dc.contributor.urlsakura@fun.ac.jpen_US
dc.contributor.urlyuichi@ccm.media.kyotou.ac.jpen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
5A3.pdf1.07 MBAdobe PDFView/Open


Items in UniMAP Library Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.