EVALUATION OF MOTHER SPAWN PRODUCTION OF Volvariella volvacea (PADDY STRAW) MUSHROOM ON DIFFERENT SUBSTRATE FOR

AR STRA TH RATE CHENG WEELKAL CHENG WEELKAL FACULTY OF ENGINEERING TECHNOLOGY UNIVERSITI MALAYSIA PERLIS 2017

EVALUATION OF MOTHER SPAWN PRODUCTION OF Volvariella volvacea (PADDY STRAW) MUSHROOM ON DIFFERENT SUBSTRATE FOR RAPID MYCELIUM GROWTH

JRC by original coopinion by original coopinion CHENG WEEI KAI Report submitted in for the requirer elor of Ch of Bachelor of Chemical Engineering Technology

DECEMBER 2017

ACKNOWLEDGMENT

First and foremost, I would like to thank my supervisor Mdm. Siti Aminah binti Mohd Hassan for her perfect guidance by giving timely suggestions throughout the whole period of this project and also for her continuous supervision and valuable guidance for improvements and completion of my thesis successfully. Without her kind support and help, this research would not be this successful. The project and the work report would have never been completed without her guidance and assistance. Therefore, I am very glad and grateful to have her as my supervisor.

I would also like to take this opportunity to thank my FYP coordinator, Mdm. Amira Farzana Samat for providing weekly FYP class lecture to help me further understand the minor details of the project work and planning the FYP schedule to guarantee each stage of the research progressed according as planned.

Special thanks to Laboratory Management Unit in Institute of Sustainable Agrotechnology for allowing and providing me the equipment available and their constant supervision for offering the necessary information regarding this thesis.

of course, this acknowledgement would not be completed without expressing my sincere thanks to my family and Ms. Mah Jia Xin for the endless support and encouragement which helped me a lot in completion of this thesis. Thank you for the patient and faith from my family members for standing by my side to face all the challenges with me. My beloved mum who is always by my side in all the times I needed her most, who served as my inspiration to pursue in all the undertakings of this degree.

Last but not least, I wish to extend a warm thanks to those who have involved directly or indirectly in my project, especially my roommates and course mates, Mr. Lee Wai Sheng and Mr. Tay Wee Xiang and postgraduate friend Mr Naresh Nash for giving me the moral support during my time of needs. I hereby sincerely apologize to anyone that I might have troubled or offended throughout the course of my work.

This term is protected by original copyright

APPROVAL AND DECLARATION SHEET

This project report titled Evaluation of Mother Spawn Production of *Volvariella volvacea* (Paddy Straw) Mushroom on Different Substrate for Rapid Mycelium Growth was prepared and submitted by Cheng Weei Kai (Matrix Number: 141282450) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Chemical Engineering Technology (Industrial Biotechnology) in Universiti Malaysia Perlis (UniMAP).

, al copyring Checked and Approved by (SITI AMINAH BINTI MOHD HASSAN) othisitem **Project Supervisor**

Faculty of Engineering Technology Universiti Malaysia Perlis

December 2017

PENILAIAN TERHADAP PERLBAGAI SUBSTRAT UNTUK MENINGKATKAN KADAR PERTUMBUHAN MISELIUM CENDAWAN JERAMI PADI (Volvariella volvacea) DALAM PENGELUARAN BENIH INDUK

ABSTRAK

Benih induk merupakan sumber penting dalam mendorong pertumbuhan cendawan jerami yang mempunyai impak yang signifikan kepada produktiviti dari segi kuantiti dan kualiti. Kajian ini bertujuan untuk menilai substrat yang paling sesuai untuk menghasilkan pertumbuhan miselium cendawan jerami yang cepat. Ekstrak Malt Agar (MEA) menghasilkan pertumbuhan miselium cendawan jerami yang paling pantas berbanding dengan Agar Dekstrosa Kentang dan Nutrien Agar. Secara umumnya, pertumbuhan miselium dalam MEA adalah 2 hari lebih pantas daripada PDA dan NA langsung tiada miselium. Selain itu habuk kayu getah dijumpai menghasilkan pertumbuhan miselium yang paling pantas apabila dibandingkan dengan pertumbuhan miselium padi, jerami padi, habuk kayu getah (RSD), tandan buah kosong kelapa sawit (EFB) dan EFB kompos. Justeru itu, dengan menggunakan parameter daripada jurnal, habuk kayu getah bersama dengan parameter suhu, dedak padi dan kalsium karbonat digunakan untuk menjalankan kajian pengoptimuman dengan reka bentuk "Box-Behnken Design (BBD) dalam "Response Surface Methodology" (RSM). Selepas menjalankan kajian pengoptimuman, kondisi optimum bagi menghasilkan pertumbuhan miselium yang paling pantas dalam substrat habuk kayu getah adalah 34 °C, 0.5 g dedak padi dan 0.07 g kalsium karbonat. Satu lagi kajian pengesahan telah dijalankan bagi mengesahkan kondisi yang dicadangkan oleh BBD dan didapati bahawa jumlah tempoh bagi miselium V. volvacea untuk memenuhi substrat habuk kayu getah adalah 5.82 hari berbanding dengan nilai yang dianggarkan 5.89 hari. Ralat yang kecil menunjukkan bahawa model ini sesuai untuk digunakan dalam pengoptimuman jumlah tempoh bagi miselium V. volvacea untuk mempenuhi substrat habuk kayu getah. Jumlah kandungan lignoselulosa jerami padi didapati mengandungi 11.87 % extraktif, 20.84 % hemiselulosa, 34.12 % selulosa, 10.58 % lignin and 22.51 % abu dan miselium V. volvacea .dijumpai memenuhi substrat jerami padi dalam masa 10 hari, manakala substrat tandan buah kosong kelapa sawit memenuhi substrat jerami padi dalam masa 12 hari. Keputusan yang diperolehi daripada kajian tersebut menunjukkan bahawa substrat habuk kayu getah sesuai untuk digunakan untuk menghasilkan miselium *V. volvacea* yang cepat.

o this item is protected by original copyright

ABSTRACT

Mother spawn production is an essential source for the development of mycelium growth which will lead to the productivity of the fruiting body of straw mushroom in both quantity and quality. This study aimed to evaluate which substrates produces rapid mycelium growth rate of straw mushroom. Malt Extract Agar (MEA) was found to produce the fastest V. volvacea mycelium as compared to Potato Dextrose Agar (PDA) and Nutrient Agar (NA). Generally, the mycelium growth of straw mushroom in MEA was 2 days faster than PDA, while NA has no growth of mycelium at all. By comparing the mycelium growth rate of paddy rice, paddy straw (PS), rubber wood sawdust (RSD), non-composted empty fruit bunches (EFB) and composted EFB, RSD was found to produce rapid mycelium growth rate. Thus, optimization of RSD with the parameters temperature, amount of rice bran and calcium carbonate (CaCO₃) was carried out using Box-Behnken design (BBD) of Response Surface Methodology (RSM). The optimum conditions obtained after optimisation studies depicts that at 34 °C, 0.5 g rice bran and 0.07 g of CaCO₃. The solution of validation test obtained from experiment was close to the predicted value given by BBD with days taken for V. volvacea mycelium fully colonization on RSD substrate of 5.82 days versus predicted value of 5.89 days. The error was small thus the model was suitable to use for the optimization of Days taken for V. volvacea mycelium fully colonization on RSD substrate. The total lignocellulosic of paddy straw was found to be 11.87 % extractives, 20.84 % hemicellulose, 34.12 % cellulose, 10.58 % lignin and 22.51 % ash and , it was found out that the total days taken for V. volvacea mycelium to fully colonize the substrate paddy straw in "bongkah" was 10 days while for non-composted EFB was 12 days. The result attained from this study shows that rubber wood sawdust has the potential to become the alternative substrate to produce rapid mycelium growth.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	i
APPROVAL ABD DECLARATION SHEET	ii
ABSTRAK	iii iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vi
LIST OF FIGURES	ix
LIST OF PLATES	xi
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS AND NOMENCLATUR	RES xv
CHAPTER 1 INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Research Objectives	4
1.3.1 General Objectives	4
1.3.2 Specific Objectives	4

CHAPTER 2 LITERATURE REVIEW

2.1	Paddy Straw Mushroom (Volvariella volvacea)		5
	2.1.1	History of V. volvacea mushroom	5
	2.1.2	Production of V. volvacea in Malaysia	5
	2.1.3	Morphological Characteristics of V. volvacea	6

		2.1.3.1 Pinhead Stage	7
		2.1.3.2 Tiny Button Stage	7
		2.1.3.3 Button Stage	8
		2.1.3.4 Egg Stage	8
		2.1.3.5 Elongation Stage	8
		2.1.3.6 Mature Stage	8
	2.1.4	Cultivation Process of V. volvacea	9
		2.1.4.1 Spawn Production	9
		2.1.4.2 Substrate Preparation	10
		2.1.4.3 Incubation Process	11
		2.1.4.4 Harvesting Process	11
	2.1.5	Parameters affecting the Compost Process for V. volvacea	12
		2.1.5.1 Carbon to Nitrogen Ratio	12
		2.1.5.2 Moisture Content	13
		2.1.5.3 Temperature	13
		2.1.5.4 Substrate Composition	13
		2.1.5.5 pH	13
2.2	Paddy	y Straw (PS)	14
	2.2.1	Total Production of Paddy Straw Wastes in Malaysia	14
	2.2.2	Utilization of EFB as Mushroom Cultivation Medium	14
2.3	Total	Lignocellulosic Content of Paddy Straw (PS)	15
2.4	Medic	inal Value of Straw Mushroom	15
2.5	Desig	n of Experiment	16
	2.5.1	Response Surface Methodology (RSM)	16
	2.5.2	Box-Behnken Design (BBD)	17

CHAPTER 3 METHODOLOGY

3.1	Process Flow Chart	18
3.2	Description of Apparatus, Chemicals and Glassware	19

3.3	Kineti	c Study of Mycelium Growth	20
	3.3.1	Preparation of Media	20
	3.3.2	Preparation of Pure Mother Culture	21
	3.3.3	Radial Growth Measurement of Mycelium Extension of	
		V. volvacea in Different Culture Media	21
	3.3.4	Kinetic Study of Mycelium Growth on Different Culture Media	22
3.4	Screen	ning and Mycelium Growth Determination for Different Substrate for	
	Mothe	er Spawn Production	22
	3.4.1	Preparation of Substrates	22
	3.4.2	Preparation of Inoculums	23
	3.4.3	Screening of Mycelium Growth of V. volvacea Cultivation for	
		Mother Spawn Production using GRT Method in Different	
		Substrate	23
3.5	Evalua	ation of the Mycelium Growth of V. volvacea on Different Substrates	
	using	Glass Race Tube (GRT) Method for Mother Spawn Production	23
	3.5.1	Kinetic Study of the Mycelium Growth of V. volvacea on	
		Different Substrates using GRT Method for Mother Spawn	
		Production	23
	3.5.2	Optimization of Mycelium Growth of V. volvacea Cultivation for	
		Mother Spawn Production	24
	3.5.3	Optimization of Mycelium Growth of V. volvacea Cultivation for	
		Mother Spawn Cultivation using Box-Behnken Design (BBD)	24
	3.5.4	Mycelium Growth Rate	25
3.6	Collec	tion and Preparation of Paddy Straw	26
	3.6.1	Lignocellulosic Content Determination of Paddy Straw	26
	3.6.2	Analysis of Ash	26
	3.6.3	Analysis of Extractives	27
	3.6.4	Analysis of Hemicellulose	27
	3.6.5	Analysis of Lignin	28
	3.6.6	Analysis of Cellulose	28
3.7	Comp	arison of the Total Days Taken for V. volvacea Mycelium to Fully	
	Colon	ize the Substrate Paddy Straw and Non-composted EFB	28

CHAPTER 4 RESULTS AND DISCUSSION

APPE	NDIX	A Kinetic Study of Mycelium Growth of <i>V. volvacea</i> on	
APPE	NDICI	ES	
REFF	ERENC	ES	61
5.3	Comn	nercialization Potential	59
5.2	Recor	nmendation for Future Project	59
5.1	Summ	nary	58
CHA	PTER S	5 CONCLUSION	
	Colon	ize the Substrate Paddy Straw and Non-composted EFB	57
4.5	Comp	arison of the Total Days Taken for V. volvacea Mycelium to Fully	
	Hemio	cellulose and Cellulose) of Paddy Straw	55
4.4	Deteri	nination of Total Lignocellulosic Content (Extractives, Ash, Lignin,	
	4.3.4	Validation of Experimental Model	54
		4.3.3.3 Summary of the Results	54
		4.3.3.2 Interaction between Parameters	50
		4.3.3.1 Effect of Parameters	50
	4.3.3	Model of Analysis	50
	4.3.2	Confirmation of Experiments and Adequacy of the Models	48
	4.3.1	Statistical Analysis	43
	Subst	rate by using Box-Behnken Design (BBD)	42
1.5	V. vol	<i>vacea</i> Mycelium to Fully Colonize the Rubber Wood Sawdust	
43	Ontim	vization of the Parameters that Affect the Total Days Taken for	50
	Metho	ad	36
	and C	ereal Grain (Paddy Pice) using Glass Pace Tube (GPT)	
4.2	Comp	osted and Non-composted EEB Rubber-wood Sawdust Paddy Straw	
12	Comp	arison of the Mucelium Growth of V volvacea Added on	30
	V. VOI	(MEA/DDA/NA)	20
4.1	Analy	sis on the Mycelium Growth Length from Different Body Part of	
4 1	A 1		

Different Culture Media for Body Part Outer Surface,

Inner Heart and Glass Race Tube Method

165

APPENDIX B Extractives, Ash and Total Lignocellulosic of Paddy Straw 67

o This term is protected by original copyright

LIST OF TABLES

Tables No).	Page
2.1	Cultivated mushrooms in Malaysia for the year 2014	6
2.2	Major forms of carbohydrates in three popular substrates for V. volvacea	12
	mushroom cultivation	
2.3	Total generation volume of paddy straw wastes in Malaysia, 2011	14
2.4	Comparison of total lignocellulosic content of paddy straw	15
3.1	List of chemicals	19
3.2	List of materials	19
3.3	List of equipment	20
3.4	Preparation for MEA, PDA and NA media	20
3.5	Range of parameters for BBD design for the chosen parameters in	24
	optimization	
3.6	The model design to study the effect of the chosen factors in	25
	optimization	
4.1	Days taken for V. volvacea of mycelium growth length subjected to	31
	different culture media for body part outer surface	
4.2	Days taken for full colonization for V. volvacea of mycelium subjected	31
G	to different culture media for body part outer surface	
4.3	Kinetic study for full colonization for V. volvacea subjected to different	32
	culture media for body part outer surface	
4.4	Days taken for V. volvacea of mycelium growth length subjected to	34
	different culture media for body part inner heart	
4.5	Days taken for full colonization for V. volvacea of mycelium subjected	34
	to different culture media for body part inner heart	

4.6	Kinetic study for full colonization for V. volvacea subjected to	34
	different culture media for body part inner heart	
4.7	Days taken for V. volvacea of mycelium growth length subjected to	39
	different substrates using GRT method	
4.8	Days taken for full colonization for V. volvacea subjected to different	40
	substrates using GRT method	
4.9	Kinetic study for full colonization for V. volvacea subjected to	40
	different substrates using GRT method	
4.10	Design and response of the BBD for days taken for V. volvacea	42
	mycelium fully colonized RSD substrate	
4.11	Sequential Model Sum of Squares	44
4.12	Lack of Fit Tests	44
4.13	Model Summary Statistic	45
4.14	ANOVA for quadratic model of days taken for V. volvacea mycelium	45
	fully colonized RSD substrate	
4.15	Statistical parameters obtained from ANOVA of days taken for V.	47
	volvacea mycelium fully colonized RSD substrate	
4.16	Average total days taken for V. volvacea mycelium fully colonization	55
	on RSD substrate of validation solution	
4.17	Desirability ramp for numerical optimization	55
4.18	Total lignocellulosic content of paddy straw	56
4.19	Total days taken for V. volvacea mycelium to fully colonize the	57
	"bongkah" subjected to different substrate	
B1	Extractives	67
B2 (Hemicellulose	67
B3	Lignin	68
B4	Ash	68
B5	Cellulose	68

LIST OF FIGURES

Figures No.		Page
2.1	Growth stage of V. volvacea	7
4.1	Days taken for V. volvacea of mycelium growth length subjected to	33
	different culture media for body part outer surface	
4.2	Kinetic Study of Mycelium Growth of V. volvacea on different Culture	e 33
	Media for body part outer surface	
4.3	Days taken V. volvacea of mycelium growth length subjected to	35
	different culture media for body part inner heart	
4.4	Kinetic Study of Mycelium Growth of V. volvacea on different Culture	e 35
	Media for body part inner heart	
4.5	Days taken for V. volvacea of mycelium growth length subjected to	• 41
	different substrates using GRT method	
4.6	Kinetic study of mycelium growth of V. volvacea on different	t 41
	substrates using GRT Method	
4.7	Normal probability of internally studentized residuals for days taken	ı 49
	for V. volvacea mycelium fully colonized RSD substrate	
4.8	Plot of internally studentized residuals vs predicted response for the	e 49
	^b days taken for <i>V. volvacea</i> mycelium fully colonized RSD substrate	
4.9	Three dimensional response surface plot indicating the interaction	n 50
	between temperature and amount of rice bran on days taken for V.	
	volvacea mycelium fully colonization on RSD substrate	
4.10	Three dimensional response surface plot indicating the interaction	5 1
	between temperature and amount of CaCO3 on days taken for V.	•
	volvacea mycelium fully colonization on RSD substrate	

4.11 Three dimensional response surface plot indicating the interaction 53 between the amount of rice bran and amount of CaCO₃ on days taken for *V. volvacea* mycelium fully colonization on RSD substrate

This term is protected by original copyright

LIST OF PLATES

This term is protected by original copyright Page Plates No. 3.1 21 21 3.2

LIST OF SYMBOLS

A _d	Ash
cm	Centimeter
cm Day	Centimeter per Da
°C	Degree Celcius
$\frac{^{\circ}C}{min}$	Degree Celcius per minute
g	Gram
$\frac{g}{L}$	Gram per Liter
kg	Kilogram
k _r	Radial Growth of Mycelium Linear Expansion Rate
k _t	Mycelium Growth Rate
m	Meter C
min	Minutes 6
mL	Milliliter
mm	Millimeter
$\frac{mm}{h}$	Millimeter per Hour
%	Percentage
R, W 🕜	Radius of the Radial Growth of Mycelium Extension
t_d	Doubling time
x	Time
у	Distance
μ_w	Mycelium Specific Growth Rate

LIST OF ABBREVIATIONS AND NOMENCLATURE

ANNOVA	Analysis of Variance
Atm	Atmospheric Pressure
BBD	Box-Behnken Design
CaCO ₃	Calcium Carbonate
C:N	Carbon to Nitrogen
DoE	Design of Experiment
EFB	Empty Fruit Bunches
F-Value	Fisher Value
GRT	Glass Race Tube
H_2SO_4	Sulphuric Acid
ME	Malt Extract
MEA	Malt Extract Agar
NA	Nutrient Agar
Na ⁺	Sulfate Ion
NaOH	Sodium Hydroxide
PS	Paddy Straw
\mathbb{R}^2	Correlation Coefficient
R-squared	Determination of Coefficient
RSD	Rubber Wood Sawdust
RSM	Response Surface Methodology
SEA	South East Asia
V. volvacea	Volvariella volvacea