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Proses Penyahstabilan Antara-lapis Bentonit Semulajadi dan Komersil Yang 

Dimasukkan ke Dalam Nanokomposit Etilena Vinil Asetat (EVA) Yang 

Berpengisi-Nano Silikat Hibrid 

ABSTRAK 

Bentonit semulajadi dan komersil boleh bertindak sebagai pengisi yang efisien untuk 

mengukuhkan matriks polimer sekiranya daya pengikat antara-lapis yang kuat menjadi 

lemah untuk mengurangkan pembentukan taktoid. Dalam penyelidikan ini, proses 

menyahstabilkan antara-lapis dilakukan bagi mendapatkan struktur tanah liat berlapis 

yang longgar, mengembang dan tidak teratur untuk penyelitan polimer dan penyerakan 

pengisi yang lebih baik semasa fabrikasi komposit polimer/tanah liat. Tiga kaedah 

ketidakstabilan yang berbeza digunakan untuk bentonit semulajadi dan komersil dan 

kesannya terhadap kembangan dan susunan platlet tanah liat diperhatikan. Bentonit 

semula jadi asli dan yang telah dinyahstabilkan telah dicirikan dan dibandingkan 

berdasarkan komponen kimia mereka (XRF), struktur kimia (XRD dan FTIR) dan 

morfologi (FESEM). Analisis kimia mendedahkan bahawa komposisi mineralogi dan 

kimia kedua-dua jenis bentonit mempengaruhi struktur dan keupayaan pengembangan 

semasa proses penyahstabilan. Keputusan XRD menunjukkan bahawa jarak asas (d001) 

bentonit semulajadi dan komersil berkurangan apabila proses ketidakstabilan tunggal 

(dengan tambahan garam) telah digunakan tetapi meningkat apabila ketidakstabilan 

dilakukan dengan gabungan kawalan pH dan proses penambahan garam. Peningkatan 

jarak asas berlaku dari 1.55 nm ke 1.59 nm bagi bentonit semulajadi dan dari 1.42 nm 

ke 1.46 nm bagi bentonit kormesial. Ini menunjukkan bahawa proses penyahstabilan 

melalui gabungan kawalan pH dan penambahan garam adalah lebih cekap dalam 

mengembangkan bentonit semulajadi dan komersil. Ini disokong oleh analisis FESEM 

di mana platlet yang lebih kecil, lebih tersusun longgar dan seragam diperhatikan 

kerana pegubahsuaian dan kelemahan daya pengikat antara-lapis dari bentonit semula 

jadi dan komersil. Bentonit 'tidak stabil' digunakan sebagai pengisi-nano-bersama 

dengan montmorillonite yang telah diubah suai (OMMT) untuk membentuk pengisi-

nano silikat hibrid pada matriks kopolimer EVA. Keputusan menunjukkan bahawa 

bentonit 'tidak stabil' yang disediakan oleh gabungan kawalan pH dan penambahan 

garam adalah lebih berkesan dalam menguatkan matriks EVA apabila digabungkan 

dengan OMMT dengan memberi kesan pencapaian tertinggi sebanyak 124.9% terhadap 

kekuatan tegangan, 13.5% terhadap pemanjangan pada takat putus dan 190.8% terhadap 

keliatan tegangan. Tambahan lagi, kestabilan terma nanokomposit EVA juga bertambah 

baik. Ini boleh dikaitkan dengan penyebaran bentonit yang lebih baik ketika proses 

penyahstabilan yang membolehkan interaksi pengisi matriks yang lebih baik dalam 

sistem nanokomposit. Secara ringkas, proses penyahstabilan melalui kawalan pH dan 

penambahan garam adalah teknik yang berkemampuan dan praktikal untuk 

meningkatkan penyebaran bentonit di seluruh matriks polimer. Tanpa menggunakan 

bahan kimia yang mahal dan beracun, ia boleh diguna pakai sebagai pendekatan baru 

untuk mengembangkan bentonit untuk teknologi nanokomposit mesra alam sekitar. 
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Interlayer Destabilization Process of Natural and Commercial Bentonite 

Incorporated Ethylene Vinyl Acetate (EVA) Nanocomposite with Hybrid Silicate 

Nanofillers 

 

 

 

 

ABSTRACT 

Natural and commercial bentonites can act as efficient fillers to reinforce a polymer 

matrix if their strong interlayer binding forces are weakened to reduce tactoid 

formation. In this research, interlayers destabilization process was applied to gain a 

loosely packed, swelled and disorganized clay layered structure for better polymer 

intercalation and filler dispersion during the polymer/clay composite fabrication. Three 

different destabilization methods were applied to the natural and commercial bentonites 

and their effects on swelling and platelets ordering/stacking of the clays were observed. 

The pristine and destabilized natural and commercial bentonites were characterized and 

compared based on their chemical component (XRF), chemical structure (XRD and 

FTIR) and morphology (FESEM). Chemical analysis revealed that mineralogical and 

chemical compositions of both types of bentonite affect their structure and swelling 

capability during the destabilization process. XRD results suggest that basal spacing 

(d001) of both natural and commercial bentonites reduced when single destabilization 

process (by salt addition) was applied but increased when destabilization was done by 

the combination of pH control and salt addition processes. The increment of basal 

spacing was seen to be ~0.04 nm for both natural and commercial bentonites showing 

that the destabilization process through combination of pH control and salt addition is 

more efficient in swelling both natural and commercial bentonite clays. This is 

supported by FESEM analysis where smaller, more loosely packed and uniform 

platelets were observed due to swelling and weakening of the interlayer binding forces 

of both natural and commercial bentonite clays. The ‘destabilized’ bentonites were used 

as co-nanofiller with the organically modified montmorillonite (OMMT) to form hybrid 

silicate nanofillers for EVA copolymer matrix reinforcement. Results show that the 

‘destabilized’ bentonite prepared by the combination of pH control and salt addition is 

most efficient in reinforcing the EVA matrix when combined with the OMMT by 

allowing 124.9% increment in tensile strength, 13.5% in elongation at break and 

190.8% in toughness values. Furthermore, thermal stability of the EVA nanocomposite 

was also improved. This could be related to the improved dispersion of bentonite upon 

the destabilization process that allows greater matrix-filler interactions in the 

nanocomposite system. In summary, destabilization process through pH control and salt 

addition is the promising and practical technique to improve the dispersion of bentonite 

throughout the polymer matrix. Without the use of expensive and toxic chemicals, it 

can be adopted as a new approach to swell bentonite for more environmental friendly 

nanocomposite technology.  
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1 

CHAPTER 1  

 

INTRODUCTION 

1.1 Research Background 

It is widely known that polymeric materials can be tailored to meet specific 

property requirements by the incorporation of nanosize clays (nanoclays) such as 

bentonite, montmorillonite (MMT), fluoromica and hectorite (Kotal and Bhowmick, 

2015; Osman et al., 2012a). This combination of polymers and nanoclays resulted in 

new form of materials called polymer nanocomposites, which possess various 

advantages over the neat polymer such as the improvement in mechanical and barrier 

properties, biocompatibility, biostability, flame retardancy and also thermal stability 

(Osman et al., 2012a; Osman et al., 2015; Alosime, Edward, & Martin et al., 2015; 

Andriani et al., 2013). While a large body of research concerning polymer-organoclay 

nanocomposites exists, the number of studies specifically devoted to ethylene vinyl 

acetate (EVA) nanocomposite is relatively small (Merinska, Kalendova, Dujkove, Slouf 

& Simonik, 2013; Feldman, 2016a). The use of EVA copolymer as the nanocomposite 

matrix presents some interesting challenges to understand the complex morphology of 

the EVA, due to existence of semicrystalline, non-polar polyethylene (PE) and 

amorphous, polar poly(vinyl acetate) (PVA) structure (Merinska et al., 2013; Fink, 

2010). Silicate material like bentonite is one of the best nanofiller candidates for EVA 

as it is abundant, low cost, having high aspect ratio and tailorable surface chemistry 

(Osman et al., 2012a, Ray & Okanamoto, 2003). Bentonite is a naturally-occurring 

material with clay mineral smectite as its predominant composition. Its layered structure 
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comprises of high aspect ratio platelets, suitable for reinforcing polymers. However, its 

hydrophilic characteristic may hinder efficient reinforcing effect of the hydrophobic 

polymers. Therefore, the semi-synthetic silicates such as the surface modified 

montmorillonites are commercially available as the more compatible fillers used to 

reinforce the hydrophobic polymers.  The addition of small amount of organically 

modified montmorillonite (OMMT) as nanofiller has been proved to provide 

enhancement in tensile strength, toughness and thermal stability to the host EVA, 

without reducing its flexibility (Osman, Kalo, Hassan, Hong & Azmi, 2016; Osman et 

al., 2017a). However, it was also been demonstrated that the use of hydrophobic 

OMMT alone as nanofiller could not optimize the mechanical and thermal properties of 

the copolymer (Osman et al., 2016; 2017a). This is because; the EVA copolymer 

comprises of both hydrophobic and hydrophilic phases of PE and PVA, respectively.  

As continuation of these previous studies (Osman et al., 2016; Osman et al., 

2017a), this project was conducted to investigate the effect of using more than one type 

of silicate material as nanofiller in EVA, to further upgrade the properties and viability 

of EVA for advanced applications, such as biomedical. The combination of both 

hydrophobic and hydrophilic nanoclays as hybrid nanofillers can ensure greater 

nanofiller interactions with both monomers in the EVA copolymer system. This benefit 

in more efficient stress transfer mechanism and greater shielding of the more 

susceptible-to-degrade PVA chains. The use of bentonite as co-filler with OMMT was 

thought can reduce the ‘catalytic’ effect as less amount of organic surfactant is used and 

stronger PVA-Bentonite interface bonding can be developed due to polar-polar 

interactions established between both constituents. Subsequently, more stable PVA 

chains can be produced to resist thermal degradation. In previous preliminary work, the 
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combination of unmodified bentonite (Bent) and organically modified montmorillonite 

(OMMT) as nanofiller which is known as ‘hybrid nanofillers’ was proved to provide 

synergistic effects to morphology and properties of the EVA (Osman et al., 2017a). 

Their incorporation into the EVA structure has provided nanofiller interactions with 

both co-monomers exist in the EVA copolymer, which are PE and PVA. The use of 

small portion of unmodified bentonite clay (Bent) has successfully enhanced the 

nanofiller-PVA interaction as both are hydrophilic. However, due to poor Bent 

dispersion, they have observed only small improvement in the EVA/OMMT/Bent 

hybrid nanocomposite properties when benchmark with EVA/OMMT nanocomposite 

system (Osman et al., 2017b). To achieve the optimum ‘interaction’ and ‘shielding 

effect’, the bentonite needs to be well exfoliated and dispersed throughout the host 

polymer structure. An efficient dispersing technique needs to be applied to exfoliate the 

highly stacked platelets (tactoids) in the pristine bentonite, prior to melt compounding 

with the EVA copolymer. This is because; this ‘filler pre-dispersing technique’ can 

ensure greater nanoclay dispersion during the melt compounding process (Osman et al., 

2017a). Previous work indicates that ultra-sonication is an efficient pre-dispersing 

technique for OMMT (Osman et al., 2017b). However, this method is not efficient to be 

applied for bentonite because this unmodified clay has much greater stacked platelets 

(tactoids) due to the absence of organic surfactant on the silicate surface. In this project, 

a new, simple, safe and economic destabilization technique was proposed to produce 

well exfoliated bentonite nanofiller. Without the use of any toxic and costly surfactants, 

this method involves the use of salt concentration and pH control during the bentonite 

suspension preparation to destabilize the bentonite interlayers cohesive energy. The 

efficiency of this technique to enhance the bentonite dispersion and subsequent EVA 

nanocomposite properties (mechanical and thermal properties) was studied. 
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Furthermore, the morphology and exfoliation behaviour of the destabilized natural 

bentonite were compared with the commercial bentonite. The purpose was to observe 

the exfoliation degree and efficiency between the natural and commercial bentonite 

towards the applied destabilization process. Both natural and commercial bentonites 

(pristine and destabilized state) were characterized using XRF, XRD, FTIR, and 

FESEM and the structure and properties of the resultant nanocomposites were evaluated 

by tensile test, XRD, FTIR, TEM, TGA and DSC. 

1.2 Problem Statement 

Ethyl vinyl acetate copolymer has potential to be applied for various 

applications because of its versatility, tailorable chemical composition (by varying the 

proportion of vinyl acetate (VA) and ethylene monomers) and wide range of 

mechanical properties (depending on the ethylene and VA composition)(Fink, 2010). 

The EVA mechanical and thermal properties can be greatly improved with the 

incorporation of OMMT nanofiller without sacrificing its intrinsic property (flexibility). 

The flexible, tough and thermally stable EVA plastic is beneficial for biomedical 

application, for instance as insulation material for electrically active implantable device. 

However, the incorporation of OMMT alone has resulted in insignificant mechanical 

and thermal property enhancement. The imbalance OMMT nanofiller interactions with 

PE and PVA phases of the copolymer may resist optimum reinforcing and toughening 

effects of the nanofiller. Furthermore, the hydrophilic, amorphous and flexible 

component in the EVA the (PVA chains) has tendency to degrade due to lack of 

nanofiller-PVA interactions. The OMMT, which possess hydrophobic characteristic, 

has more affinity towards the hydrophobic polyethylene (PE) chains. As a result, these 
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non-optimized nanofiller-PVA-PE interactions will prevent greater property 

enhancement in the EVA copolymer system. The incorporation of the hydrophilic 

bentonite nanofiller can overcome this problem, as these polar nanofiller can interact 

with the PVA chains of the EVA. However, bentonite has close packed tactoid that can 

prevent polymer intercalation between the clay interlayers. Bentonite is commonly 

modified via cation exchange method using alkyl ammonium or alkyl phosphonium 

surfactant to expand the interlayer spacing and subsequently facilitate polymer chain 

intercalation. However, this surface modification method has some drawbacks such as 

the high cost of the organic surfactant, its toxicity effect and tendency of surfactant to 

degrade upon high temperature melt compounding process (Andriani et al., 2013). In 

this work, an alternative method; the so called ‘destabilization process’ of bentonite by 

pH control and salt addition was applied. This more environmental friendly technique 

does not involve the use of costly and toxic surfactants to reduce the binding energy of 

clay interlayers, thus the tactoids formation. 

1.3 Research Question/Hypothesis 

It is widely known that in the conventional production of polymer 

nanocomposite using melt compounding process, the nanoclay exfoliation process will 

take place during the compounding of both nanoclay and polymer mixture. This is due 

to melt shear viscosity and shearing effect from the screw/mixing blade. However, most 

of the cases, the intercalated nanocomposite structure were obtained rather than fully 

exfoliated structure. This is because, the polymer viscosity and screw shearing effect 

are not sufficient to assist in complete exfoliation of nanoclay into individual layer, 

especially if the nanoclay is used in its original form (unmodified). The question is, is 
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the nanoclay ‘destabilizing’ approach through salt and pH control that applied prior to 

melt compounding can assist in greater degree of clay exfoliation before and after being 

incorporated into the polymer matrix and subsequently enhance the nanocomposite 

mechanical and thermal performance. 

The study was conducted based on two main hypotheses: 

1) Dispersion of the ‘destabilized’ Bentonite : 

Bentonite has pH dependant charges on the edge of the clay and permanent 

charges on the clay surface. The edge sited of clay is positive at low pH and negatively 

charged at higher pH. The changes in the pH will influence the cohesive strength 

between the silicate interlayer, thereby the stability of the tactoid formed. The electrical 

double layer form as salt was added and the positive charge spills to the edge site. The 

closely packed tactoids can be opened up as the negative surface charge interacts with 

positive edge charge as lower pH and salt was added. Consequently, loosely packed 

clay tactoids can be obtained to allow better platelet exfoliation and dispersion within 

the polymer matrix, during the melt compounding process. In this project, well 

dispersed and exfoliated Bent nanofiller was targeted to produce an optimize EVA 

copolymer/Bent/OMMT hybrid nanocomposite system for biomedical application.  

2) Hybrid exfoliated Bent/OMMT nanofillers to improve EVA-nanofiller 

molecular interactions: 
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Hybrid silicate nanofillers with different polarity (OMMT: hydrophobic; 

Bentonite: hydrophilic) was hypothesized to result in more optimum EVA-nanofiller 

interactions, as the EVA copolymer contains the hydrophobic PE chains and 

hydrophilic PVA chains in its structure. Enhancement in nanofiller-EVA interactions 

will also lead to improvement in overall EVA nanocomposite performance (mechanical 

& thermal properties). Furthermore, the use of the ‘exfoliated’ bentonite as co-

nanofiller with the OMMT can reduce the production cost of the nanocomposite as it is 

cheaper and naturally available. 

1.4 Objective Study 

In this research, the main objectives of study were to apply a new method called 

‘destabilization process’ to exfoliate nanoclay (bentonite) and investigate its 

effectiveness in optimizing the mechanical and thermal properties of the EVA/hybrid-

filler nanocomposite. The three specific objectives were; 

1.  To characterize and compare the morphology and exfoliation behavior of 

bentonite clay nanofiller upon the application of a new destabilizing technique 

with varying pH condition, salt concentration and ultra-sonication time. 

2. To evaluate the mechanical properties, structure and morphology of the EVA 

nanocomposites incorporating the pristine and destabilized natural and 

commercial bentonites, in single and hybrid form. 
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3. To evaluate the thermal properties of the EVA nanocomposites incorporating 

the destabilized natural and commercial bentonites, in single and hybrid form. 

1.5 Scope of Study 

In this study, destabilization technique was the method used to disorganize the 

clay layer silicates. Destabilization method is a process to ensure that the clay can be 

more efficiently exfoliate within the polymer matrix. The polymer used as matrix was 

ethylene vinyl acetate 40% (EVA). For nanocomposite comprising single nanofiller, the 

clays used were natural bentonite, commercial bentonite and OMMT. On the other 

hand, for nanocomposite comprising hybrid nanofillers, the OMMT was used as main 

nanofiller while commercial or natural bentonite was employed as co-nanofiller. As 

both bentonites existed in pristine state (without surface modification), destabilization 

process was done to ensure good dispersion of the bentonite platelets throughout the 

EVA matrix. There were three different type of destabilization process involved; first 

method was destabilization of both types of bentonite with nitric acid (HNO3) at 

different pH value ( pH4, 5 and 6) and various time (5, 10 and 15 minutes). HNO3 was 

used as destabilizing agent because it has a medium strength of acid concentration, 

suitable for industrial use. Second destabilization method involved the addition of 

sodium chloride (NaCl) with different concentrations of; 0.01M, 0.1M and 1M as well 

as various time (5, 10 and 15 minutes). NaCl was used over other salt because it 

contains Na
+ 

ion with larger atomic size than other types of salt such KCl and KNO3, 

thus swelling of tactoid layer can be more efficient.The third destabilization process 

involve destabilization of both bentonite with HNO3 (pH4) and addition of 0.01M of 

NaCl in 15 minutes. All suspension of clays were stirred by using Branson Ultrasonic 
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