
Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

2B2-1

Design Representation of the Multipurpose Fuzzy
Logic Controller using Hardware Description

Language

1Zeyad Assi Obaid, 1 Nasri Sulaiman and 1 M. N. Hamidon, 2 Mohammed Obaid Ali
1 Department of Electrical & Electronic Engineering, Faculty of Engineering,

University Putra Malaysia,
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.

eng.alhamdany@yahoo.com,

Abstract- A large numbers of fuzzy control applications with the
physical systems require a real-time operation to interface high
speed constraints; higher density programmable logic devices
such as field programmable gate array (FPGA) can be used to
integrate large amounts of logic in a single IC. This paper
presents a design representation of the multipurpose fuzzy logic
controller using hardware description language, in order to make
a comparison between other designs in the physical systems. The
controller is (Proportional – integral – derivative Fuzzy Logic
controller (PIDFLC)), with programmable fuzzy sets and
programmable rule table using VHDL language. The method
used to design the fuzzy logic controller is to design it with the aid
of conventional PID control to serve wide range of the physical
systems efficiently. The design representation is presented using
RTL viewer in the ALTERA Quartus II program. Timing test
results for the proposed controller was very fast ranging from
20.8 nano second, and the controller has the ability to serve a
wide range of the systems.

Keywords - Fuzzy logic controller, Altera, PID controller.

I. INTRODUCTION

Fuzzy Logic has been successfully applied to a large number
of control applications. The most commonly used controller is
the PID controller, which requires a mathematical model of
the system. Fuzzy logic controller provides an alternative to
PID controller since it is a good tool for the control of systems
that are difficult in modeling. The control action in fuzzy logic
controllers can be expressed with simple “if-then” rules [1].
Fuzzy controllers are more sufficient than classical Controllers
because they can cover a much wider range of operating
conditions than classical Controllers, and fuzzy controllers can
operate with noise and disturbances of different nature. The
used method most often to implement a fuzzy controller is to
use it as a computer program on a general purpose computer,
higher density programmable logic devices such as Field-
Programmable Gate Array (FPGA) can be used to integrate
large amounts of logic in a single IC. FPGA provide additional
Flexibility: they can be used with tighter time-to-market
schedules. FPGA places fixed logic cells on the wafer, and the
FPGA designer constructs more complex functions from these

Cells. The term field programmable highlights the
customizing of the IC by the user, rather than by the foundry
manufacturing the FPGA. Several researchers discussed the
design of hardware fuzzy logic controller. Number of these
works were specialized in control application [2], [3], and
were aim to get better control responses. Others were
concerned in developing general fuzzy logic processors. Their
searches were concern using new techniques in fuzzy
algorithm, to get higher processing speed versus low
utilization of chip resource [4], [5].

II. CLASSICAL PID CONTROLLER

In a P controller the control deviation e(t) is produced by
forming the difference between the process variable yp(t) and
the desired output yd(t); this is then amplified to give the
anipu1ating variable, which operates a suitable actuator. The P
controller simply responds to the magnitude of the deviation
and amplifies it. As far as the controller is concerned, it is
unimportant whether the deviation occurs very quickly or is
present over a long period. Beside P component, there are
other control components that behave in the same way
mentioned below:

 The D component responds to changes in the process
variable.

 The I component responds to the duration of the
deviation. It sums the deviation applied to its input
over a period of time.

The D and I components, are often combined with a P
component to give PI, PD or PID controllers [6].

III. STRUCTURE OF THE FUZZY LOGIC CONTROLLER

Fuzzy logic controller contains of three parts in any design,
fuzzifier, inference engine or rule base and defuzzifier as
shown with more details in the following sections. Figure (1)
shown the structure of the fuzzy logic controller.

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

2B2-2

A. The Fuzzifier Block

Fuzzification process is performed using two fuzzifier
blocks, one for each input variable. Each fuzzifier block takes
the input variable and produces four output values represent
the sequence numbers of the two active fuzzy sets, (i and i+1),
and the membership degrees of the variable in each one of

them, (i and 1i). Fuzzifier block consists of three
elements: memory module (called Input fuzzy sets’ memory),
inverter, and incremental. The memory module is used as a
lookup table that stores membership values and active fuzzy
set number for each entry value of input. Membership
functions of any shape could be implemented in this memory
by choosing the right memory words that represent the desired
membership functions accurately. The memory module was
implemented using core utility provided by Xilinx core
generator system as a read-only memory (ROM). Each word
in the input fuzzy sets’ memory is divided into two parts. The
first part is 3 bits data word represents the sequence number of
the first active fuzzy set. The sequence number of the second
active fuzzy set is obtained by adding one to the sequence
number of the first active fuzzy set using the incremental.
Assigning 3 bits for the sequence number of the fuzzy set will
restrict the maximum number of fuzzy sets for each input
variable to 8 fuzzy sets. The second part of memory word is 6
bits data word that represents the membership value of input
in the first active fuzzy set. The membership value of input in
the second active fuzzy set can be obtained by subtracting the
membership value of the input in first active fuzzy set from
one [4], [5], [7].
This dictates that the summation of membership values of two
consecutive fuzzy set is always equal to one, as in the
following equation:

11  ii 

 (1)

This limits the changing of the shapes of fuzzy sets. However,
this restriction is widespread in many fuzzy control systems.

B. Inference Engine Block

The Inference Engine Block used in the proposed design
is based on active rule selector mechanism. Active rules
selector block uses the information delivered from fuzzifier
about active fuzzy sets, (have nonzero membership values), to
launch only active rules. In this way, using an active rule
selector, the number of rules to be processed will be reduced
according to this equation:

Number of active rules =
mV (2)

Where m is the number of inputs, and V is the maximum
number of overlapped fuzzy set. In the proposed design, it
assumes that m = 2 and V = 2. Hence, the number of active

rules at each time is
mV =

22 = 4: rules. In addition to active
rules selector block, inference engine involve two other
blocks: rule memory (contains rule consequent) and minimum
circuit (circuit to calculate the applicability degree for each
active rule) [5].

C. Defuzzifier Block

The defuzzification process is performed in the
Defuzzifier block using the Centroid method defined by
Equation below:








N

k
k

N

k
kk

z

1

1

*




 (3)

Where N represents the number of the rules k is the degree
of the applicability of the kth rule; _k is the defuzzified value
of the output membership function of the kth rule [8]. The

Fig. 1. Structure of fuzzy logic controller with unity feedback control system.

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

2B2-3

Defuzzifier involves two accumulators, one multiplier, and
one divider. The defuzzifier block accepts four rules
consequent and their membership degrees from the inference
engine, (sequentially, in four clock cycles), and produces a
crisp output to the output gain block, The membership degrees
and rules consequents are delivered from the inference engine
in a sequential manner in four consecutive clock cycles,
instead of being produced in parallel in one clock cycle. This
will enhance (reduce) the used area of the target FPGA, at the
expense of increasing time interval between input latching and
output producing [5].

IV. STRUCTURE OF THE PROPOSED CONTROLLER

The main block in the PDFLC is the fuzzy inference

block. The proposed fuzzy inference block is two inputs, one
output fuzzy system of Mamdani type that uses singleton
membership functions for the output variable (it could also be
considered as a Sugeno type with constant rule consequents.
The first input is the error signal e(n), and the second input is
the rate of change of error signal defined as the difference
between two consecutive error values and given as:

)1()()( nenene (4)

Where e(n-1) is the error from previous sampling. Before
entering the fuzzy inference block, each one of these two
inputs is multiplied by a gain coefficient inside the PDFLC,

(Kp and Kd or Kp and Ki). In similar manner, the output of
the fuzzy inference block is multiplied by a gain coefficient
inside the PDFLC, (Ko). At the same time, the output of the
fuzzy inference block in the second PDFLC is multiplied by a
gain coefficient then accumulated to form the uPIFLC. Both
outputs (uPDFLC and uPIFLC) are added together to form the
PIDFLC output (uPIDFLC) as shown in figure (2).

V. FPGA DESIGN CONSEDERATIONS

The chosen target device family in the proposed design is
Virtex FPGAs family form Xilinx Company. Virtex FPGAs
family offers a useful criterion to the proposed design, which
is the internal RAM block. Virtex FPGAs incorporate several
large block memories. These complement the distributed Look
Up Table (LUT), that provides shallow RAM structures
implemented in configurable logic blocks (CLBs). This
criterion is very useful because fuzzy system almost needs
large storage element to store fuzzy sets information and rule
table [5], [8].

VI. COMPILATIONS AND TIMING TEST RESULTS

The proposed design was done using VHDL language; the
proposed design was tested during ALTERA Quartus II 6.1
program with RLT viewer in order to check the design
inputs/outputs pins. Figure (3) shows the flow summary for

Fig. 2. The main structure of the proposed PID fuzzy logic controller.

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

2B2-4

the design after testing and compilation.

Fig. 3. Compilation reports flow summary.

After design test and design compilation, for every design we
have to synthesis and analysis our design, figure (4) shown

Analysis & synthesis resource usage summary.

Fig. 4. Analysis & synthesis resource usage summary.

In our design representation, the first part of the fuzzy logic
controller is fuzzifier, this part in our design contain of two
inputs as mansion above, the first input is the error, and the
second is the change of error, in order to design this part, in
this paper, this part contain of two part with one input
fuzzifier, figure (5), (6) shown the one and two input fuzzifier
respectively.

A[7..0] SPO[8..0]

0

1
A[2..0]

B[2..0]
OUT[2..0]

ADDER

A[7..0]

B[7..0]
OUT[7..0]

ADDER

A[7..0]

B[7..0]
OUT[7..0]

ADDER

A[11..0]

B[11..0]
OUT

LESS_THAN

A[11..0]

B[11..0]
OUT

LESS_THAN

A[7..0]

B[7..0]
OUT[15..0]

MULTIPLIER

A[7..0]

B[7..0]
OUT[15..0]

MULTIPLIER

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21
myrom:myrom1

\gainandshift:nsgcomp[7]

Add0

3' h1 --

Add1

8' h01 --

Add2

8' h01 --

LessThan0

12' h080 --

LessThan1

12' h07F --

Mult0

Mult1

nsgcrisp[6..0]

nsgcomp~[7..0]

8' h01 --

nsgcomp~[15..8]

8' hFE --
crisp[7..0]

interval1[2..0]

interval2[2..0]

mship1[5..0]
mship2[5..0]

gain[7..0]

Fig. 5. One input fuzzifier.

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

2B2-5

For other two part of our design (inference engine and
defuzzifier), figure (7) shown the design representation of the
inference engine for our design.

For the third part of our design, figure (8) shown the design
representation for the defuzzifier which contain of the output
pins required for testing the systems.

crisp[7..0]

gain[7..0]

interval1[2..0]

interval2[2..0]

mship1[5..0]

mship2[5..0]

crisp[7..0]

gain[7..0]

interval1[2..0]

interval2[2..0]

mship1[5..0]

mship2[5..0]

a[7..0]

b[7..0]
sum[7..0]

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

fuzzifier_one_ip:fuzzifier1

fuzzifier_one_ip:fuzzifier2
signmodule:signmodule1

oldcrisp1[7..0]

scrisp1[7..0]

scrisp2[7..0]

scrisp1~[7..0]

scrisp2~[7..0]

valid
w_clk

reset

crisp1[7..0]

crisp2[7..0] interval_mship1_ip1[8..0]

interval_mship2_ip1[8..0]

interval_mship1_ip2[8..0]

interval_mship2_ip2[8..0]

pgain[7..0]
dgain[7..0]

Fig. 6. Two input fuzzifier.

A[5..0] SPO[7..0]

A[5..0]

B[5..0]
OUT

LESS_THAN

SEL[1..0]

DATA[3..0]
OUT

MUX

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB

OUT0

MUX21

my_op_rom:my_op_rom1

LessThan0

Mux0

4' h6 --

romadd[2..0]

romadd[5..3]

s2s1[1..0]

sin1_of_inp1[8..0]

sin1_of_inp2[8..0]

sin2_of_inp1[8..0]

sin2_of_inp2[8..0]

term1[5..0]

term2[5..0]
mship_min~[5..0]

s2s1~[1..0]

2' h0 --

valid
w_clk

in1_of_inp1[8..0]

in2_of_inp1[8..0]

in1_of_inp2[8..0]

in2_of_inp2[8..0]

fuzzy_op[7..0]

mship_min[5..0]

Fig. 7. Inference engine or fuzzy inference.

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

2B2-6

In the timing test for our design, we got that the maximum
actual time required for PD controller is 20.803 ns between
opgain (2) and the output (3), as shown in figure (9).

ck

godiv

num[15..0]

den[7..0]

goout

zetaout[7..0]

A[15..0]

B[15..0]
OUT[15..0]

ADDER

A[7..0]

B[7..0]
OUT[7..0]

ADDER

D Q
PRE

ENA

CLR

A[5..0]

B[7..0]
OUT[13..0]

MULTIPLIER

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX21

newdivider:mydivider1

Add0

2' h0 --

Add1

2' h0 --

den[7..0]

Mult0

num[15..0]

test_den[7..0]~reg0

test_num[15..0]~reg0

cyc[4..1]

den~[7..0]

2' h0 --

num~[15..0]

2' h0 --

valid
w_clk

valido

fuzzy_op[7..0]
mship_min[5..0]

crisp_op[7..0]

test_den[7..0]

test_num[15..0]

Fig. 8. Structure of the defuzzifier block.

Fig. 9. Timing analyzer summary.

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

2B2-7

VII. CONCLUSION

This paper proposed the design representation of the multi
purpose fuzzy logic controller using hardware description
language, in order to make a comparison with other design
using software especially with the physical systems which
require a real-time operation. Compilation and timing test
results for our design method show that the design using
hardware description language is able to produce the same
structure for the design using MATLAB. In the timing test for
our design, we got that the maximum actual time required for
PD controller is 20.803 ns between opgain (2) and the output
(3). Therefore the proposed controller will contains the same
specification to other design in order to control a wide range
of the physical systems with sampling time ranging from
milliseconds. This small-size high-speed chip is able to offer
adequate accuracy. From this compression, we got that the
responses of the proposed controller are very close to the
responses of the software-based controllers which designed
using MATLAB.

ACKNOWLEDGMENT

The authors would like to thank firstly, our god, and all UPM
staff and all friends who gave us any help related to this work.
Finally, the most thank is to our families and to our countries
which born us.

REFERENCES

[1] S.Poorani, T.V.S.Urmila Priya, K.Udaya Kumar and

S.Renganarayanan,"FPGA based fuzzy logic controller
for electric vehicle", Journal of The Institution of
Engineers, Singapore, Vol. 45 Issue 5 2005.

[2] Onur KARASAKAL, Engin YES," Implementation of a
New Self-Tuning Fuzzy PID Controller on PLC", Turk J
Elec Engin, VOL.13, NO.2 2005.

[3] V. Tipsuwanporn,3 S. Intajag and V. Krongratana, "Fuzzy
Logic PID controller based on FPGA for process control",
IEEE International Symposium on Industrial Electronics,
Vol. 2, pp. 1495-1500, 4-7 May 2004.

[4] Mohammed Y. Hassan and Waleed F. Sharif, " Design of
FPGA based PID-like Fuzzy Controller for Industrial
Applications", IAENG International Journal of Computer
Science, 34:2, IJCS_34_2_0517 November 2007.

[5] Zeyad Assi Obaid, Nasri B Sulaiman, Mazin T. Muhssin
"Design of Fuzzy Logic Controller Using FPGA For The
Non-Linear Systems" proceeding of the 3rd International
Conference on Postgraduate Education In Penang,
Malaysia, 16-17 December 2008.

[6] M.Schleicher and F. Blasinger,” Control Engineering a
Guide for Beginners” Jumo Gmbh & Co. KG, Fulda,
Germany, 3rd edition, 2003.

[7] S. Sánchez Solano, A. Barriga, C. J. Jiménez, J. L.
Huertas," design and application of digital fuzzy
controllers" the Sixth IEEE International Conference on
Fuzzy Systems, Vol. 2, pp. 869-874, Barcelona - Spain,
July 1-5, 1997.

[8] “Virtex™ 2.5 V Field Programmable Gate Arrays” data
sheet DS003, www.xilinx.com.

