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Sistem Pengesan Memancing Data yang Cekap dan Pantas Menggunakan Pelayan 
Berdasarkan Analisis Leksikal URL 

 
 

ABSTRAK 

 

Pengesanan serangan phising ialah bidang penyelidikan yang signifikan untuk aplikasi 
keselamatan rangkaian. Laman web sahih selalunya terdedah kepada serangan phishing. 
Phishing menyebabkan cabaran berterusan dan terus menjadi ancaman menerusi 
pelbagai vector seperti enjin carian, laman web palsu, emel dan mesej segera. Penipuan 
berbentuk ini telah berevolusi untuk kekal satu langkah kehadapan oleh tindak balas 
terkini. Ia memanipulasi kelemahan pengguna yang menyebabkan penyelesaian masalah 
ini semestinya kompleks. Pengkelas phising menggunakan ekstrak fitur untuk mengesan 
laman phishing dan ia bergantung kepada sama ada kandungan laman web, Pengesan 
Sumber Seragam (URL) atau kedua-duanya. Pengekstrakan fitur URL mengandungi 
hos dan maklumat leksikal. Di dalam tesis ini pengekstrakan fitur hanya berdasarkan 
fitur leksikal untuk mengurangkan kos pemprosesan disebabkan oleh pengekstrakan 
fitur maklumat hos. Fitur-fitur ini digunakan oleh pengkelas untuk mengesan laman 
web phishing. Kebanyakan strategi pengesanan serangan phishing melayan mekanisme 
pengesanan pelanggan. Di dalam tesis ini, teknik baru pengesanan serangan phishing di 
cadang untuk mencapai sistem yang pantas, tegap dan tepat dengan menggunakan fitur 
leksikal sahaja.  Bahagian pertama tesis mempersembahkan analisa dan pembangunan 
untuk fitur leksikal URL sedia ada termasuk tokenisasi dan mekanisme n-gram yang 
mengekstrak dan menganalisa token dan pengagihan n-gram yang sahih dan set data 
phishing diikuti dengan implementasi token berasaskan  pengkelas (TCL) dan 
pengkelas beasaskan N-gram (NGCL). Oleh itu, TCL dan NGCL masing-masing 
memecahkan URL kepada token dan n-gram dan menggunakan pengagihan untuk 
proses klasifikasi. Juga, bahagian pertama tesis mencadangkan pengkelas berasaskan 
model bahasa (LMCL) yang membina model untuk kedua-dua kelas phishing dan sahih 
untuk mengklasifikasi  URL berdasarkan kemungkinan tertinggi dan dibandingkan 
dengan pengkelas TCL dan NGCL. Bahagian kedua tesis mencadangkan penggunaan 
output LMCL sebagai pengkelas fitur tunggal yang digabungkan dengan fitur leksikal 
URL untuk membina fitur keseluruhan yang digunakan oleh pengkelas Mesin 
Pembelajaran (ML). Kemudian cadangan untuk meminda output LMCL untuk 
mengekstrak model fitur sub-bahasa dan menggabungkan dengan fitur leksikal URL 
untuk melatih pengkelas ML. Berikutan strategi ML bernama J48, pengkelas Mesin 
Sokongan Vektor (SVM) dan regresi logistic (LR) digunakan untuk mengesan URL 
phishing. Prestasi penilaian telah dicapai di semua peringkat untuk memenuhi pengesan 
serangan phishing yang pantas dan tepat. Sementara itu, kesemua pengkelas yang telah 
dicadangkan diuji menggunakan set data sebenar yang dikutip daripada pelbagai sumber 
untuk meneroka ketegaran teknik yang dicadangkan. Akhirnya, keputusan menunjukkan 
keboleharapan fitur leksikal berketepatan tinggi, tegar dan laju untuk pengesanan 
phishing URL. Diantara pengkelas yang dicadangkan, J48 dengan fitur cadangan 
menunjukkan keputusan keseluruhan terbaik dengan ketepatan 99% dan masa purata 
yang diperlukan untuk mengesan URL tunggal ialah 0.46 saat. 
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Efficient and Fast Server based Phishing Detection System  
Using URL Lexical Analysis 

 
 
 

ABSTRACT 

Phishing attack detection is a significant research area for network security applications. 
Legitimate websites is typically prone to phishing attacks. Phishing poses an ongoing 
challenge and continues to be a threat via numerous vectors such as search engines, fake 
websites, emails and instant messages. It has evolved its deceptions to remain one step 
ahead of the latest countermeasures. It exploits the weaknesses of the users which 
makes solving this problem especially complex.  Phishing classifier uses the extracted 
features to detect the phishing websites and it depends on either the website’s content, 
the Uniform Resource Locator (URL) or both of them. The URL feature extraction 
comprises host and lexical information. In this thesis, the feature extraction is based on 
the lexical features only in order to reduce the processing overhead due to the host 
information feature extraction. These features are utilized by a classifier to detect the 
phishing website. Most of the phishing attack detection strategies served the client side 
detection mechanisms. In this thesis, a new server side phishing attack detection 
technique is proposed to achieve fast, robust and accurate system by using lexical 
features alone. The first part of thesis presents analysis and development for the existing 
lexical features of URL including the tokenization and n-gram mechanisms which 
extract and analyze tokens and n-gram distribution of legitimate and phishing datasets 
followed by implementing Token based Classifier (TCL) and N-gram based Classifier 
(NGCL). Therefore, TCL and NGCL segment URLs into tokens and n-grams 
respectively and employ their distribution for classification process. Also, the first part 
of thesis proposing Language Model based Classifier (LMCL) which build a model for 
both of phishing and legitimate classes to classify URLs according to the highest 
probability and compared with TCL and NGCL classifiers. The second part of thesis 
proposing using the output of LMCL as a single classification feature in combination 
with URL lexical features in order to build the whole features that used by the Machine 
Learning (ML) classifiers. Then proposing to modify the output of LMCL to extract sub 
language model features and combined with URL lexical features to train ML 
classifiers. Regarding ML strategy J48, Support Vector Machine (SVM) and Logistic 
Regression (LR) classifiers are used for detecting the phishing URLs. The performance 
evaluation has been achieved regarding all these stages to meet a fast and accurate 
phishing attack detection. Meanwhile, all the proposed classifiers are tested using real 
life datasets collected from different sources in order to explore the robustness of the 
proposed techniques. Finally, the results showed a reliability of lexical features to 
provide high accuracy, robust and fast detection of phishing URLs. Among the 
proposed classifiers, J48 with the proposed features presents the best overall results with 
99% accuracy and the time required to detect single URL is a 0.46 second on average.  
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CHAPTER 1

INTRODUCTION

The web has evolved widely in the life of people and since the beginning of

Internet in 1990s, a lot of new security issues and threats appear continuously which

constitute a challenge to users and security experts as well. Phishing is a cutting edge

threat that has a deep impact on commercial and banking sectors by means of the Internet

and delivers a huge misfortunes at the level of clients and organizations (Khonji, Iraqi, &

Jones, 2013a). Phishing websites are highly similitude with the honest ones via trying to

trap and bait users into these websites. Regarding this sort of attacks, phishers normally

utilize technical and social designing traps together to begin their attacks. The social

engineering attacks are focusing on users not on a system itself and intending to get the

users information which are typically considered to be a touchy and confidential (Bozkir

& Sezer, 2016).

Anti-Phishing Work Group (APWG)(Greg Aaron, 2016) reported that the num-

ber of phishing websites increased by 250% in the period from the last three months of

2015 to the first quarter of 2016 as shown in Fig. 1.1. The total number of discovered

unique websites in the first quarter of 2016 is 289,371. Also, steadily rose per month was

observed from October 2015 to March 2016 ranged from 48,114 to 123,555 respectively

(Greg Aaron, 2016). These statistics demonstrate the significance to distinguish URLs

and domain names to battle phishing. Additionally, the rise of online websites as high-

lighted in (Netcraft, 2016) reaches about one billion providing more services accessible

on the Internet that can be targeted by phishers. Consequently, numerous new physical

vectors, victims and targets get to be accessible letting space for a new sort of phishing

1
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attacks to be executed.

Different attack vectors are used to launch phishing attack such as search engines,

fake websites, advisement, email, instant message, social media or phone call (G. Liu,

Qiu, & Wenyin, 2010). This assortment of phishing attacks leads to a difficult protection

against this phenomenon and existing phishing detection methods just adapting to a few of

them. In spite of the broad field of phishing attack vectors, a typical purpose of numerous

vectors is the utilization of the link misleading victims for phishing websites. Utilization

of obfuscated Uniform Resource Locator (URL) and domain names are widely used in

phishing attacks (Aaron & Rasmussen, 2015). URL obfuscation lures users by misleading

them to forged websites via a URL or website of a genuine website familiar to the victim

(Aaron & Rasmussen, 2015; Cova, Kruegel, & Vigna, 2008).

Figure 1.1: APWG phishing site trends 1st quarter 2016 (Greg Aaron, 2016).

Intelligent solutions based on phishing feature extraction (Abur-rous, Hossain,

Dahal, & Thabtah, 2010; Almomani, Gupta, Atawneh, Meulenberg, & Almomani, 2013;

2
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X. Chen, Bose, Leung, & Guo, 2011; Kazemian & Ahmed, 2015; Thomas, Grier, Ma,

Paxson, & Song, 2011; Le, Markopoulou, & Faloutsos, 2011; J. Ma, Saul, Savage, &

Voelker, 2011; Blum, Wardman, Solorio, & Warner, 2010a; J. Ma, Saul, Savage, &

Voelker, 2009; Khonji, Iraqi, & Jones, 2011) depend on extracting important features

of the website and after the extraction process these features utilized by an algorithm to

decide or detect the phishing website. In general can be divided into content based and

URL based solutions. Content based intercept and download the full contents of website

for analyzing which can provide high detection accuracy with much more runtime over-

head. In addition, it might accidentally provide more threats to users they look to keep

safe from it. URL based techniques use a combination of host information and lexical

features (Le et al., 2011; Thomas et al., 2011). Hosting information features need to be

extracted from a remote server which in turn poses large latency to classify the URLs

and prevent employing such methods for real time systems. While, URL lexical features

are represented as bag-of-words result in huge vectors of features and cause processing

overhead in addition to the low detection accuracy. Mostly, URL features are used to train

a Machine Learning (ML) algorithms to generate a classifier to detect unseen URLs.

Generally, anti-phishing solutions can be positioned in different levels of attack

flow where most researchers are focusing on client side solutions (Almomani et al., 2013;

Khonji et al., 2013a; Heartfield & Loukas, 2016; Tewari, Jain, & Gupta, 2016; Aleroud

& Zhou, 2017). The tools in client side include profile filter and browser toolbars. A

few samples of a such tools can be specified by: CallingID1, Spoof-Guard (Teraguchi &

1http://www.callingid.com/partners/safe-search/
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Mitchell, 2004), IE phishing filter2, NetCraft3, CloudMark4 and eBay toolbar5. However,

client side tools add more processing overhead which can leads to lose the trust and

satisfactory of users. Other factor that has always been challenging for the researcher and

security expert in browser based techniques is the mode to display the warning messages.

Passive warning used to notify about phishing, such as change in colour, pop-up with

textual information displayed at the corner or periphery of browser without interrupting

browse activity is either unnoticed or neglected by Internet user (Wu, Miller, & Little,

2006; Aleroud & Zhou, 2017; Zeydan, Selamat, & Salleh, 2014).

On the other hand, server side solutions are usually based upon approaches which

use content filtering and form the best means of defending against zero-hour or zero-day

phishing attempts. For this reason, most new developments to address zero-day attacks

are based on server side applications (Khonji, Iraqi, & Jones, 2012). The server side filters

and classifiers applications based on machine-learning techniques for phishing attack de-

tection are divided into sub-sections such as bag-of-words model (Blanzieri & Bryl, 2008;

A. Hamid & Abawajy, 2011; Wardman, Stallings, Warner, & Skjellum, 2011), multi

classifiers algorithms (Miyamoto, Hazeyama, & Kadobayashi, 2008; Islam & Abawajy,

2013) , classifiers model based features (Islam & Abawajy, 2013; T.-C. Chen, Stepan,

Dick, & Miller, 2014), clustering of phishing email (Bagirov, 2008; L. Ma, Yearwood,

& Watters, 2009) and multi-layered system (Yearwood, Mammadov, & Banerjee, 2010;

Olivo, Santin, & Oliveira, 2013; Abawajy & Kelarev, 2012). Generally, each has the

same techniques, but has some differences in term of features extraction.

2https://support.microsoft.com/en-us/kb/930168
3http://toolbar.netcraft.com/
4http://www.cloudmarkdesktop.com/
5http://pages.ebay.co.uk/help/accounttoolbar-install.html
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These previous studies of server side ML based techniques have built phishing

classifiers to detect phishing websites using a combination of URL lexical features, host-

ing information, network traffic, and other strategies. Using lexical features only leads to

low accuracy of detection which forces the designers of phishing classifiers to employ the

other types of features such host information. Using such features required information

to be looked up on a remote server. Though previous works had utilized URL lexical

analysis as a component, what was lacking was the exploration of the full potential of a

purely lexical approach to provide a high accurate and fast detection approach. Addition-

ally, there is lack discussion of the delayed producing by these methods (A. Aggarwal,

Rajadesingan, & Kumaraguru, 2012) and very little works stated the time required to de-

tect a single URL which is considered unsuitable for real time application (Thomas et al.,

2011; Le et al., 2011; Marchal, François, State, & Engel, 2014). As a consequence of

restrictions in a current methods and the remembering that the most promising technique

is URL analysis, especially the technique which depends only on lexical analysis and

URL detection in a real time will be best familiar with minimum processing overhead. In

addition, the main data entry points are usually a masqueraded URL (or link). Hence, this

work proposing using URLs lexical features alone in order to explore the upper bound of

performance can be achieved by URL lexical based phishing classifiers to provide high

detection accuracy and minimum processing time to classify a single URL.

1.1 Problem Statement

Server side phishing detection systems are considered as the ideal solution to de-

tect zero-day attacks online (Khonji et al., 2012; Almomani et al., 2013; Thomas et al.,

2011). These systems should be lightweight enough to support the real time process and
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