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  Abstract- This paper investigates the utilization of a multi-
objective approach for evolving artificial neural networks 
(ANNs) that act as controllers for a collective box-pushing task 
based on radio frequency (RF)-localization of a group of virtual 
E-puck robots simulated in a 3D, physics-based environment. 
The elitist Pareto-frontier Differential Evolution (PDE) 
algorithm is used to generate the Pareto optimal sets of ANN that 
optimize the conflicting objectives of maximizing the virtual E-
puck robots’ behaviors for pushing a box towards a wall based 
on RF-localization as well as minimizing the number of hidden 
neurons used in its feed-forward ANN controller. A new fitness 
function which combines two different behaviors (1) RF-
localization behavior and (2) box-pushing behavior is also 
proposed. The experimentation results showed that the virtual E-
puck robots were capable of moving towards to the target and 
thereafter push the box towards the target wall with very small 
neural network architecture. Hence, the results demonstrated 
that the utilization of the PDE approach in evolutionary robotics 
can be practically used to generate neural-based controllers that 
display intelligent collective behaviors in swarming autonomous 
mobile robots. 
 

I.    INTRODUCTION 
 

   Evolutionary techniques hold the potential to solve many 
difficult problems in robotics which defy simple conventional 
approaches. Neural controllers have seen to be widely 
optimized by evolutionary techniques and have been proven to 
be successful in generating robot controllers for the required 
tasks [1]-[5]. Formation marching, tandem movement, box 
pushing, material transport, aircraft engine maintenance, 
micro surgery, water disposal, planetary exploration, etc are 
the most common tasks that involved a group of robots in 
achieving the required objectives [6]-[10]. The listed tasks are 
unable to be completed without a comprehensive teamwork of 
more than one robot. Interestingly, there have not been any 
studies conducted yet in evolving the robot controllers using 
the evolutionary multi-objectives (EMO) algorithm, especially 
in group/collective/swarm robotics. 
   There have been very only been a handful of studies that 
have been conducted on the use of EMOs in the ER area. 
Reference [11] showed the EMO used was capable to generate 
the controllers for abstract legged robot morphology as well as 
locomotion. Then, [12] showed some researchers have utilized 
the EMO for optimizing space robot motion trajectory and 
robot’s body balancing. Furthermore, [13] showed the 
researchers have successfully generated controllers for robot’s 
manipulator trajectories and obstacle avoidance behaviors 

using EMO. Reference [14] has compared again the 
conventional GAs and MOGA for the problem of offline 
point-to point autonomous mobile robot path planning for a 
Holonomic robot. Reference [15] showed the application of 
EMOs into robotic area through learning and evolution has 
been effectively applied to multiple task performance. In [16], 
the authors have investigated on a Khepera robot phototaxis 
behavior using EMO algorithm. Furthermore, [17] has pointed 
the EMOs also can be practically used in evolving a 
quadruped robot either in noise free or noise inclusion 
environment. Whilst recently, [18] showed the EMO can be 
practically used in generating the mobile robot controllers for 
RF-localization behavior and the testing results showed the 
robot was robust to different environment used. Nevertheless, 
there is still no research reported thus far for the application of 
EMOs into group/swarm/collective robotics area. Hence, this 
forms the basic motivation for this investigation. 
   In this study, the elitist PDE-EMO is used as the primary 
evolutionary optimization algorithm. There are two distinct 
objectives to be optimized: (1) maximizing robot’s RF box-
pushing behavior whilst (2) minimizing the neural network 
complexity in terms of number of hidden neurons used during 
the optimization processes. Furthermore, a fitness function 
used for the optimization process is also proposed. During the 
testing phases, the robots are expected to be capable of firstly 
exploring for the RF signal source. Then the robots must be 
able to recognize the box and push the box towards the wall.  
   The remainder of this paper is organized as follows. In 
section II, the ANN representation used is discussed. In 
section III, the PDE-EMO algorithm used is proposed in 
evolving the robot controllers. Furthermore, a clear view of 
the experimental setup used is proposed in section IV and it 
follows with the discussion of fitness function used in 
evolving the robot controllers. Then, the discussions are 
continued with the evolution and testing results obtained in the 
sections VI and VII. Finally, section VIII summarizes the 
conclusions and future work for this study. 
 

II.    THE ANN REPRESENTATION 

 
   Neural networks are widely used for classification, 
approximation, prediction, and control problems. In this paper, 
the experiment is conducted with five E-puck robots. Each of 
the E-puck robots is integrated with eight infrared obstacle 
distance sensors, four touch sensors, one RF signal receiver 
and two wheels. The infrared distance sensors, touch sensors 
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and RF receiver are presented as input neurons to the ANN 
while the speed of the robot’s wheels represents the output 
neurons from the ANN. A feed-forward neural network is 
used as the neural controller for the robot. The chromosome in 
this experiment is a class that consists of a matrix of real 
numbers that represents the weights used in the ANN 
controller. The binary number for the hidden layer represents a 
switch to turn a hidden unit on or off. Fig. 1, below depicts the 
morphogenesis of the chromosome into the ANN architecture. 
 

 
 

Fig. 1. The representation used for the chromosome 

 
III.    THE PDE-EMO ALGORITHM  

    
   This paper investigates a multi-objective problem which 
solves two objectives simultaneously: (1) maximize the 
collective box-pushing task based on radio frequency (RF)-
localization of a group of virtual E-puck robots whilst (2) 
minimize the number of hidden neurons used in the neural 
controller. The Pareto-front thus represents a set of networks 
with different numbers of hidden units and different numbers 
of homing and box-pushing behaviors. The elements of the 
binary vector are assigned the value 1 with a probability of 0.5 
(P(X=0.5) to give the hidden layer a 50% probability of either 
switching on or off a hidden unit in the vector of hidden units 
which is being evolved) based on a randomly generated 
number according to a uniform distribution between [0, 1]. 
The elitist PDE algorithm used in evolving the robot controller 
is presented next. 
1.0 Begin. 

2.0 Generate random initial population of potential 
chromosomes. The elements of the weight matrix are 
assigned random values according to a Gaussian 
distribution N(0, 1). The elements of the binary vector ρ 
are assigned the value 1 with probability 0.5 based on a 
random generated number according to a uniform 
distribution between [0, 1]; 0 value otherwise. 

3.0 Loop 

3.1 Evaluate the individuals or solutions in the population 
and label as parents those that are non-dominated 
according to the two objectives: maximizing RF-
localization behavior and minimizing the number of 
hidden neurons. 

3.2 If the number of non-dominated individuals (a solution 
is considered as non-dominated if it is optimal in at 
least one objective) is less than three, repeat the 3.2.1 
and 3.2.2 steps until the number of non-dominated 
individuals is greater than or equal to three (since the 
Differential Evolution algorithm requires at least three 
parents to generate an offspring via crossover). If 
insufficient solutions are retained from the first layer, 
then 3.2.1 and 3.2.2 steps have to be repeated for the 
second and subsequent layers of the non-dominated 
solutions. 

3.2.1 Find a non-dominated solution among those who 
are not labeled in the second layer of the non-
dominated results. 

3.2.2 Label the solution(s) found as the non-dominated 
points. 

3.3 Delete only dominated solutions from the population 
and retain the non-dominated solutions (elitist concept).  

3.4 Loop 

3.4.1 Select at random an individual as the main 
parent α1, and other two parents α2, α3 as 
supporting parents. 

3.4.2 Crossover with some uniform (0,1) probability, 
do 

))(1,0( 321   ihihih
child
ih N 

 
if   5.0)))(1,0(( 321    hhh N ;   
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h ; 0child

h  Otherwise;  

Otherwise; 
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And with some uniform (0,1) probability, do 
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child
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Otherwise; 
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3.4.3 Mutate with some uniform (0,1) probability, do 
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3.5 Repeat for all of the deleted solutions. 

4.0 Repeat until maximum number of generations is reached. 
End 
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IV.    EXPERIMENTAL SETUP 
 

   In this study, there are five E-puck robots as well as a box 
used in the simulation. The box is sized with 30mm height, 
275mm width, and 180mm length with 240g weight. Thus, the 
E-puck robots must work together in order to push the box 
towards the wall and within the shortest duration. However, it 
is impossible for less than three robots to accomplish this task. 
The box is purposely simulated to be three times the weight of 
the E-puck robot. Hence, at least three robots must work 
together in order to ensure they are capable to accomplish the 
task within the stipulated time. There are four box sensors 
integrated on the E-puck robot for box detection purpose. The 
sensors are positioned on the bottom front while the wall 
sensors are located on the top front of the robot. A receiver is 
located on the top of each of the E-puck robot in order to 
assist the robot to track for the signal source. It acts as a 
device which can receive signal from RF emitter. An RF 
emitter is involved and located static near to one of the 
corner’s center and on the top of the box. The radius size used 
is set at 0.3m. In this sense, the receiver and emitter are 
utilized to assist the robot to home in towards the signal 
source area and the box sensors are utilized to assist the robot 
to recognize and push the box. The robots and box are located 
on the ground with four walls which forms a square, closed 
environment; all the walls are 30mm in height whilst the 
ground covers an area of 1m2. From preliminary tests 
conducted on robustness [18], it was decided to position the E-
puck robot with the back of the robot facing the emitter and 
located far from the signal source. Fig. 2, depicts the 
experimental setup used in the experiment and followed by the 
parameter setting used as tabulated in Table I. 
 

 
Top view of the environment used 

 

 
Front view of the E-puck robot 

 
Fig. 2. Experimental setup used 

 
 
 
 

 
 

TABLE 1 
PARAMETER SETTINGS USED DURING EVOLUTION 

Number of generation 100 
Size of population 30 
Simulation time steps 180 seconds 
Crossover rate 70% 
Mutation rate 1% 
Number of hidden neurons 15 nodes 
Number of repeated simulation 10 
Random noise feature Activated  

  
   Our previous study [18] has clearly showed that optimal 
robot controllers can be generated using the parameter settings 
as given above. Thus, we have decided to use the parameter 
setting as tabulated in Table I.  
 

V.    TEST FUNCTION USED  
 

   A number of preliminary tests had been carried out in order 
to obtain a suitable fitness function for the E-puck robot’s 
collective box-pushing behavior. As a result, a combination of 
several criteria into one fitness function is proposed from the 
preliminary experimentation results. Basically, the fitness 
function comprises of a combination of the RF-localization 
behavior as well as the box-pushing behavior. Additionally, 
the fitness function also integrates obstacle avoidance 
behaviors, maximizing the average speed of the robot’s 
wheels, maximizing the robot wheels speed, maximizing the 
robot RF-localization behavior and also maximizing the box 
pushing behavior. The formulation of the fitness function is as 
follows: 
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where F represents the fitness function, T = simulation time, i 
= highest distance sensor activity, V = average speed of 
wheels, S = signal source value, WL = left wheel speed, WR = 
right wheel speed, B = highest box sensors value and H = 
hidden neuron used, with i = 1..15 representing the number of 
the corresponding hidden neuron. The F1 represents the fitness 
function used for maximizing the robot’s behavior in homing 
towards the signal source whilst F2 represents the second 
objective which is minimizing the neural network complexity. 
   The fitness values from F1 are accumulated during the life of 
the simulated robot and then divided by the simulation time. 
The obstacle avoidance characteristic is one of the most 
important components in the experiment since the E-puck 
robot is evolved with the initial orientation of facing away 
from the signal source. Thus, the controller always has to first 
evolve a behavior to avoid crashing into the opposite wall that 

E-puck robots & its direction

Signal source area 

Box 

Wall 
Sensor

Box 
Sensor
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it starts facing towards before it can home towards the RF 
signal source. The second important component is the S 
component in the F1 function, where the E-puck robot must 
locate the source properly and attempt to stay in the source 
area if possible in order to track the box. Otherwise, the robot 
may not be able to recognize the correct orientation for 
pushing the box. Other components are used to avoid the robot 
from evolving to achieve the target through a spinning 
movement that uses more time to localize towards the signal 
source. F2 represents the numbers of hidden neurons required 
and are used to reduce the complexity of the neural structure 
of the robot’s controller. 
 

VI.    EVOLUTION RESULTS 
 

   There were 10 trials conducted in this study and there were a 
total number of five robots involved in the entire conducted 
simulations. Each of the robots was evolved for the RF-
localization behavior as well as box-pushing behavior using 
the elitist PDE-EMO algorithm. There was no failed evolution 
results obtained.  
   Nevertheless, most cases showed the average accumulated 
fitness score was very low even when 180 seconds were 
provided allowed for task completion during the evolutionary 
optimization processes. The results showed the robot always 
took most of the duration to explore for the box or signal 
source.  
   Some cases showed that the robot had learned to navigate 
successfully in avoiding from bumping into the walls. In other 
cases, the simulation results showed one or more robots had 
failed to track for the signal source with successfully during 
the evolution. Thus, not all of the robots were able to learn to 
home in towards the signal source successfully. Nevertheless, 
the collected results showed the optimum solutions were still 
able to be obtained with very few hidden neurons. Fig. 3, 
below depicts the evolution results collected for all of the 
robots involved in one of the ten trials. 
   Fig. 3, clearly shows the optimum solutions were able to be 
generated during the optimization process. The elitist PDE-
EMO used was able to reduce the number of hidden neurons 
used by the robot controller. Some cases clearly showed the 
robots were capable to home in to the signal source and push 
the box towards the wall even with very few hidden neurons 
indeed, out of the permissible 15 hidden neurons.  The 
evidence is further proven in Fig. 4, below. The graph depicts 
the global Pareto-frontier solutions obtained from all of the 
conducted simulations, respectively. 
   Fig. 4, clearly shows there were only two global Pareto 
solutions obtained in all of the conducted simulations. The 
graphs showed some robots were able to perform the required 
task successfully even using only one or two hidden neurons. 
Thus, we observed that the elitist PDE-EMO used was able to 
not only generate the required controllers for RF-localization 
as well as box pushing task but also using a highly minimalist 
controller architecture to achieve this complex robotic 
collective task behavior. 

 
Robot 1 Robot 2 

 
Robot 3 Robot 4 

Robot 5 
Fig. 3. A 3D Pareto for one of the generated trial results 

  
Global Pareto-frontier Solutions Obtained  

Fitness Scores Obtained 

 
Number of Hidden Neurons 

Fig. 4. Overall Pareto solutions obtained from all of the evolutionary runs. 
The solid black line depicts the global Pareto front obtained for this particular 

experiment.  
 

VII.    TESTING RESULTS  

 
   Tests had been performed for all of the generated 
controllers. Each of the generated controllers had been tested 
five times in a similar environment as that used during 
evolution. The average time taken for the robots to home in 
towards the signal source and for the robots to push the box 
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towards the wall has been tabulated. Furthermore, the average 
success rate obtained has also been recorded. The robots are 
expected to be capable of firstly exploring and homing in 
towards the RF signal source. Then, the robots are expected to 
be able to recognize the box and push the box towards the 
wall. Nevertheless, some testing results showed the robots 
learned some different, unpredicted behaviors. The average 
time taken and average success rate for all of the testing 
results are tabulated in Table II. 
 

TABLE II 
AVERAGE TESTING RESULTS OBTAINED 

No. of 
Robots\Average 

Success Rate 
(%) in homing 
towards signal 

source 

Time 
Taken 

(s) 

Success rate 
(%) to push 

the box 
towards the 

wall 

Time 
Taken 

(s) 

Only One Robot 13.33 10.36 0 Max 
Two Robots 26.67 12.37 0 Max 
Three Robots 97.67 13.54 96 43.44 
Four Robots 93.33 13.78 56 37.42 
Five Robots 88.67 11.68 30 30.67 

 
   Table II clearly shows, most of the robots were able to 
explore and home in towards the signal source successfully 
during testing phase with an average of less than 50 seconds. 
Furthermore, the robots were able to recognize the box and 
push the box towards the wall within the permissible period. 
However, the objective may not be achieved if only one or 
two robots were used during the testing phases, which clearly 
shows that a cooperative behavior between at three robots are 
required to complete the task successfully. Fig. 5, below 
depicts one of the successful runs obtained during testing 
phases. 
 

 
(a) t = 0s (b) t ≈ 10s 

 
(c) t ≈ 30s (d) t ≈ 40s 

Fig. 5. Testing results obtained 

 
   The robots achieved the objectives with different paths, 
different time steps, and different movements even with the 

same number of hidden neurons used. Some cases showed that 
there were a number of unpredicted behaviors learned by the 
robots even though the robots had never been explicitly 
evolved for such behaviors. The unpredicted behaviors are 
summarized and presented below.  
   The robot may remain static on the ground without 
performing any movement, particularly when the robot moves 
too near to the wall. This is probably due to the fact that the 
robot had learned to stop when it moves too close to the wall. 
   The robot may learn a robot-following behavior. Some of 
the robots moved together as a coordinated group but without 
performing the box pushing task. The robot may perform the 
robot-following behavior when other robots move near to that 
particular robot. Subsequently, both robots moved in circular, 
looping movements to follow and track each other.  
   The robot also learned a rather complex obstacle avoidance 
behavior. It is not surprising if a robot is capable to avoid from 
bumping to the sensed obstacle. However, it was noticed that 
in some cases, the robot chose to stop and not restart its 
movement when other robots moved too close to it. Hence, the 
robot had also learned to avoid from bumping to a sensed 
robot which is too close to it. Consequently, the robot would 
thus have failed to work together in pushing the box towards 
the wall since one of the robots had stopped and not restarted 
its movement.  
   The robot learned the RF-localization behavior but failed to 
learn the box pushing behavior. Some cases showed the robot 
was able to explore and track for the signal source 
successfully and stay in the signal source area as long as 
possible. However, some of the robots then chose to stop and 
do nothing in front of the sensed box. Subsequently, the robot 
may sense and follow the movement of the box, if other robots 
pushed the box toward the wall but do not actually contribute 
towards pushing the box itself.  
   Some robots learned to track for the box without RF signal 
source assistance. The robots may push the box once the box 
had been sensed. However, the robot was unable to push the 
box in the correct direction. Thus, the robot may push the box 
towards another undesired direction. 
 

VIII.    CONCLUSIONS 

 
   This investigation has showed that using the PDE-EMO 
algorithm, it was possible to obtain an optimum solution of a 
collective swarming behavior in a group of simulated robots 
for a box-pushing task with extremely few hidden neurons 
used in the controller. Furthermore, the testing results also 
showed that some of the evolved robots were robust to the 
environment and were able to successfully explore and home 
in towards to the signal source during early stages of the task 
duration. Nevertheless, not all of the evolved robots were able 
to push the detected box towards wall. Importantly though, the 
elitist PDE-EMO used was able to generate the required 
controllers for the collective swarming behavior of box-
pushing as a group of multiple, cooperative robots that 
required only a minimalist controller architecture that had 
been successfully minimized. 
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