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Penghasilan dan Pencirian Busa Epoksi Memori Bentuk oleh Kaedah Akues 

Termaju 

 

ABSTRAK 

 

 

 

 

Busa memori bentuk dianggap sebagai suatu rekacipta berfaedah yang sedang diberi 

tumpuan oleh penyelidik baru-baru ini. Keupayaan busa memori bentuk adalah ia akan 

berubah bentuk di bawah daya-daya mekanikal tertentu dan perlahan-lahan pulih 

kembali ke bentuk asalnya seolah-olah ia dimemorikan. Kajian ini telah mencadangkan 

dengan kaedah akues termaju untuk menghasilkan epoksi busa memori bentuk. Kaedah 

ini sangat mesra alam kerana ia bebas daripada pelarut. Pertama sekali, campuran 

epoksi, poliamida, natrium bikarbonat dan pengisi telah disediakan dengan 

menggunakan pengacau. Kemudian, campuran diemulsikan dengan air suling 

menggunakan pengacau yang berkelajuan tinggi (1200 rpm – 2 minit), diikuti oleh 

penambahan larutan ammonium klorida ke dalam campuran tersebut dan dikacau pada 

kelajuan 600 rpm selama 2 minit. Akhirnya, emulsi epoksi dituang kedalam acuan PP 

dan dimatangkan. Kegunaan poliamida-epoksi adduct sebagai nisbah terbalik daripada 

poliamida dan epoksi telah diterokai bagi menghasilkan epoksi yang fleksibel. Oleh 

kerana poliamida diperolehi daripada dimer asid lemak minyak tinggi (TOFAS), 

poliamida-epoksi adduct mampu untuk beremulsi pada pengacauan yang berkelajuan 

tinggi tanpa menggunakan pengemulsi. Ia akan menghasilkan emulsi epoksi sama 

dengan sistem air / minyak / air (A /M / A). Di mana, air bekerja sebagai fasa berterusan 

di dalam sistem emulsi dan juga dibentangkan sebagai fasa tersebar di dalam resin 

epoksi. Tambahan, kulit telur telah digunakan sebagai pengisi eko-hijau, yang terdiri 

daripada 95 % berat Kalsium Karbonat (CaCO3). Proses pembuihan berlaku melalui dua 

mekanisma: penguraian ejen peniup dan pengewapan air yang tersebar pada matrik 

epoksi. Mekanisma pertama menghasilkan buih-liang yang besar dan saling berhubung 

manakala yang kedua menghasilkan liang yang kecil pada dinding sel. Oleh itu, busa 

epoksi akan menghasilkan liang yang banyak. Ciri-ciri ini ditunjukkan pada span 

melalui ujian set mampatan yang cemerlang (0 %) dan juga ciri-ciri memori bentuknya. 

Didapati bahawa semakin bertambah nisbah epoksi:poliamida daripada 1:3 ke 1:2 akan 

menghasilkan liang yang banyak dan kekuatan mampatan terlentang yang lebih baik 

(disebabkan oleh mampatan sambung silang yang tinggi). Walaubagaimanapun busa 

epoksi dengan nisbah epoksi:poliamida 1:3 menghasilkan memori bentuk yang lebih 

baik berbanding 1:2. Kesan daripada kandungan agen peniup yang menunjukkan 

bahawa penambahan agen peniup daripada 5 ke 15 bsr menghasilkan liang yang banyak 

dan saiz liang span yang tinggi serta ketumpatan yang rendah. Busa epoksi dengan 15 

bsr natrium bikarbonat menunjukkan memori bentuk yang terbaik tetapi rendah 

ketahanan haba, sedangkan 10 bsr adalah kandungan yang optimum bagi menghasilkan 

set mampatan yang 0 %. Fokus kepada kesan pengisi kulit telur, penambahan kulit telur 

meningkatkan emulsi epoksi, mengurangkan flokulasi dan menyimpan lebih gas agen 

peniup untuk menghasilkan liang busa yang banyak. Kulit telur menurunkan ciri-ciri set 

mampatan tetapi meningkatkan ciri-ciri memori bentuk secara ketara untuk semua 

komposit busa epoksi. 
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Production and Characterization of Shape Memory Epoxy Foam by an Advanced 

Aqueous Method 

 

ABSTRACT 

 

 

 

 

Shape memory foam is consider as an advantageous invention that has being gained 

researcher’s focus recently. The ability of shape memory foam is it will deform under 

certain mechanical forces and slowly recover back into its original shape as if it 

memories. This research suggested an advanced aqueous method to produce epoxy 

shape memory foam. This method is environmentally friendly because it is free from 

solvent. First of all, mixture of epoxy, polyamide, sodium bicarbonate and filler was 

prepared by using over-head stirrer. Next, the mixture was emulsified with distilled 

water using high stirring speed (1200 rpm – 2 minutes), following by addition of 

ammonium chloride solution into the mixture and stirred at 600 rpm for 2 minutes. 

Finally, the epoxy emulsion was casted into PP mould and cured. The uses of 

polyamide-epoxy adduct as the reversed ratio of polyamide and epoxy was explored to 

produce flexible epoxy. Due to polyamide derive from dimerize tall oil fatty acids 

(TOFAS), the polyamide-epoxy adduct was able to be emulsified at high speed stirring 

and without using emulsifier. It resulted in an epoxy emulsion similar to water/oil/water 

(W/O/W) system. Which, water worked as the continuous phase in emulsion system and 

also presented as the dispersed phase in epoxy resin. In addition, eggshell was used as 

an eco-green filler, which consisted of 95% by weight of calcium carbonate (CaCO3). 

Aqueous emulsion foaming process occurred via two mechanisms: decomposition of 

blow agents and vaporization of dispersed water in epoxy matrix. The first mechanism 

produced large foam-pores and inter-connection while the second produced small pores 

on cell wall. Therefore the epoxy foam obtained possessed high porosity. These 

advantageous features in foam structure exhibited the excellent compression set (of 0 

%) and well-shaped memory property.  It was found that increase epoxy: polyamide 

ratio from 1:3 to 1:2 produced more porosity and also better flatwise compression 

strength (due to the higher crosslink density). However epoxy foam with epoxy: 

polyamide ratio of 1:3 had better shape memory to that of 1:2. The effect of blowing 

agent content showed that increase in blowing agents from 5 to 15 phr produced higher 

porosity and the foam pore size as well as lower foam density. Epoxy foam with 15phr 

sodium bicarbonate expressed the best shape memory but low thermal resistance, while 

10 phr was also the optimum content in order to produce foam with 0% compression 

set. Focusing on the effect of eggshell filler, addition of eggshell enhanced the epoxy 

emulsion, reduced flocculation and kept more blowing agent gases to produce higher 

porosity foam. Eggshell reduced the compression set property but enhanced 

significantly shape memory property for all epoxy composite foams. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

In the last 50 years, porous material received a lot of attention by competing 

with long established solid materials (Hao, Kai, Huan & Ming, 2008). Until now, there 

were a lot of porous materials created and produced based on different in matrix, 

different in porous structure, and application. For example of porous materials which 

being produced were metallic foam and polymeric foam. In application of light weight, 

low density, and energy absorption, polymeric foam could be more potential than 

metallic foam. Polymeric foam can be divided into elastomer foam, thermoset foam and 

thermoplastic foam.  The most common thermoplastic foams are polystyrene foam, 

polyvinyl chloride foam and other thermoplastic based foam, while thermoset foams are 

polyurethane foam and epoxy foam. Polymeric foams have many applications such as 

absorbing the energy during impact events, lightweight structures, aerospace, thermal 

insulation products and shape memory foam. Recently, shape memory polymer and 

shape memory polymeric foam (SMP) are considered as new materials and have drawn 

intensive scientific attentions as functional materials with ample potentials applications 

(Kim, 2008).  
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2 

 

Versatile synthesis methods have been developed for the preparation of SMP 

(Chung, Chang, Pei & Ju, 2010). SMP, with the advantages of low density, good 

thermal and electric insulation, and high specific surface, has been found wide 

applications in membranes, filters, chromatography media, and solid supports. Those 

with pore size in the order of micrometers are also of interest for applications in 

catalysis, sensors, size- and shape-selective separation media, adsorbents, and scaffolds  

for bone and tissue in medical applications (Safinia, Mantalaris & Bismarck, 2006), 

(Nakanishi, Amatani, Yano & Kodaira, 2007).  

 

Recently, the concept of shape memory is same with the self-healing of 

structural damage and has been a tremendous interest in the scientific community. The 

ability to heal wounds is one of the truly remarkable properties of biological systems. A 

significant challenges faced by the materials science community is to design smart 

synthetic systems which can mimic this behaviour by not only sensing the presence of a 

wound or defect, but also by actively re-establishing the continuity and integrity of the 

damaged area. Such self-healing materials would significantly extend the lifetime and 

utility of a vast array of manufactured structures. Because of the widespread use of 

thermoset polymers in structural applications, self-healing of damage in thermosetting 

polymers has been a research focus for years, especially epoxy resin (Li & Nettles, 

2010). 

 

Epoxy is well-known as a brittle polymer due to its three-dimensional crosslink, 

which is obtained with the curing reaction between epoxy and hardeners. Optimum 

crosslink density will be obtained when epoxy and hardener are used in stoichiometric 

ratio based on epoxy equivalent weight and functional group equivalent weight. 
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Furthermore, the three dimensional crosslinking could be varied by changing the ratio 

of epoxy and hardener. Excess of epoxy or hardener content will result in the adduct 

system, which possesses low 3D crosslinking and exhibits different properties. One of 

the common adduct system is polyamide-epoxy adduct, which is a product of the 

reversed ratio of epoxy-polyamide ratio using excess stoichiometric polyamide content. 

Due to low polymer chain between crosslink, polyamide-epoxy adduct exhibits as a 

flexible three-dimension crosslink polymer. 

 

Ahead of screening a considerable amount of porous polymer-related literatures, 

six approaches can be concluded or summarized to prepare porous materials. They are 

of chemically and/or thermally induced phase separation (Schugens, Maquet, Grandfils, 

Jerome & Teyssie, 1996), fiber bonding (Mooney et al., 1996), solvent evaporation, gas 

foaming (Xuan, Chen, Zhongjie & Hangquan, 2008) freeze drying, electro-spinning and 

so on. Design of porous polymeric materials is continuously developing for such 

applications and entails controlling the permeability by tailoring the pore size, structure, 

and interface chemistry.  

 

Double emulsion can be considered as one the most suitable method to prepare 

porous materials because it has the emulsion systems that can double the porosity. It can 

be divided into two types which are water in oil in water (W/O/W) and oil in water in 

oil (O/W/O) (Brodin, Kavaliunas & Frank, 1978). Thermoset porous materials can be 

produced from preparing its double emulsion, which is water dispersing in thermoset 

resin dispersing in water environment (Water/Thermoset Resin/Water: W/O/W). Further 

heating will induce curing and solidifying of thermoset resin and water’s evaporation so 

that the thermoset porous are formed. Normally, foaming mechanism could be enhanced 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



4 

 

by using blowing agent. Selection of blowing agents is based on their decomposition 

mechanism, solubility, safety and cost. One of the common blowing agents is sodium 

bicarbonate, which is cheap and edible.  

 

Najib, Ariff, Manan, Bakar & Sipaut (2009) have used sodium bicarbonate as a 

blowing agent. They found that the controlling of the gas phases within the polymeric 

cell walls provides excellent properties for applications that involve impact. This is due 

to the fact that foam has excellent energy-absorbing characteristics as compared to solid 

polymeric materials. The decrease in relative density also played a role by increasing 

the number of cells per unit volume. As the blowing agent concentration increased, the 

number of cells per unit volume also increased. An increase in the blowing agent 

concentration resulted in smaller, finer, and more uniform cells. The decomposition of 

high concentrations of carbon dioxide gas occurs simultaneously for a given time. Thus, 

more cells formed at that same time. Consequently, the number of cells per unit volume 

increased, resulting in a smaller average cell size in the foam (Najib et al., 2009). 

 

In production of polymer’s product, filling or reinforcement of the polymer is one 

of the most important methods in order to enhance the properties of the materials. It 

possesses the necessary mechanical and physical properties for any given practical 

applications. The additions of filler give fast and cheap methods to modify the 

properties of the base materials. The addition of inorganic filler to polymer has received 

considerable attention lately (Fu, Feng, Lauke & Mai, 2008). Inorganic fillers are added 

to thermoset and thermoplastic resins because of economic reasons and to modify 

certain properties such as mechanical, electrical and thermal properties (Gonzalez, 

Albano, Ichazo & Berenice, 2002). 
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1.2 Problem Statement 

 

Most of thermoset foams are stiff and rigid due to the three dimension crosslink 

networks so there are some limit of thermoset foam in high impact and flexible 

application. Thermoplastic foams are the most suitable candidate for that. However, 

thermoplastic foams have poor chemical resistance and poor compression set, which 

means the foam will collapse after certain usage time. To surmount these problems, 

flexible and tough thermoset foam is investigated, which is expected to exhibit better 

properties via the light three dimension crosslink networks.  

 

The foaming process of thermoset foam involves both mechanisms such of 

curing and foaming mechanism. Both mechanisms are common exothermic reaction. 

Therefore, it is difficult to control the process. Optimum condition is necessary to 

produce good foam morphology and achieve desirable properties of thermoset foam.  

Foaming processes for epoxy resins are very complex and expensive, and chemical and 

processing details of the materials are generally proprietary (Quadrini, Santo & Squeo, 

2012). In order to control foaming process, aqueous method is introduced to prepare the 

polyamide-epoxy adduct emulsion so that the foaming and curing are carried out mildly. 

Further practice to reduce cost is to use cheap and green materials such as sodium 

bicarbonate and eggshell powder as fillers. 

 

 

 

 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



6 

 

1.3 Objectives 

 

The research objectives are as below:  

i.  To investigate the effect of epoxy-polyamide ratio on the foam morphology, 

mechanical strength, memory shape properties and thermal properties of shape 

memory epoxy foam. 

ii. To study the effect of blowing agent (sodium bicarbonate) content on foaming 

behavior as well as on foam morphology, mechanical strength, memory shape 

properties and thermal properties. 

iii. To study the effect of eggshell filler’s content on the foam morphology, 

mechanical strength, memory shape properties and thermal properties of shape 

memory epoxy foam. 

 

 

1.4 Scope of study 

 

In this study, production and characterization of shape memory epoxy foam by 

an aqueous emulsion foaming method was done. Three ratios of the epoxy : polyamide 

content such of 1:3, 1:2.5 and 1:2 were studied to modify the crosslink density of the 

epoxy matrix hence changed the foam characteristic and properties. Blowing agent 

content was varied from 5, 10, 15 and 20 phr in order to observe the effect on the 

different morphology of the samples.  Eggshell filler of 10, 20 and 30 phr was used to 

produce shape memory epoxy composite foams. Foam morphology was observed using 

optical light microscope and scanning electron microscope. The foam mechanical 

properties were investigated using compression and compression set. Thermal 
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decomposition of the foam was done by using Thermogravimetry Analysis (TGA). 

Shape memory properties were carried out by in-house developed testing procedure, in 

which, the foam specimen was folded into four times and the time of folded foam 

recovering from its original shape was recorded and reported. 
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