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Abstract- A detail account of numerical calculations using 
Finite-Difference Method (FDM) to calculate the 
polarization profile in first-order ferroelectric (FE) film 
system is given. For film, both symmetric and 
asymmetric cases are considered. The formalism is based 
on Tilley and Žekš (TZ) model using Landau-Devonshire 
(LD) equations with the boundary conditions. The 
numerical technique is described using Central and 
Forward Finite-Difference Approximation.  

I. INTRODUCTION 

With the continued demand for portability in consumer electronics, 
it is becoming increasingly important to understand the effects of 
miniaturization on the properties of the active components in 
electronic devices. In many cases, however, the basic physics of 
such size reduction is poorly understood and can be difficult to 
characterize, because competing effects such as surface properties, 
strain effects from substrates, and fundamental size quantization 
complicate the behavior [1].  

In the past few years, studies on ferroelectric (FE)-semiconductor 
devices are gaining importance, especially for future non-volatile 
memory devices, and would be a major focal point of future 
research activities [2]. FE non-volatile memories is attractive as 
replacement for conventional EEPROM and flash EEPROM 
because of lower write voltages, faster write speeds, and potentially 
fewer processing steps [3]. An important possible application of 
FE-semiconductor devices is the microminiaturization of a large 
number of adaptive transistors in an integrated circuit. Taylor [4] 
reported that in FE-semiconductor devices fabrication, the method 
of fabrication strongly influences the electrical stability of the 
devices. FE random access memory (FRAM) is one of 
semiconductor memory devices which have attracted a lot of 
attention, where the dielectric material in DRAM capacitor cell is 
replaced with a FE thin film [5]. In principle, FRAM should have a 
lower requirement, a faster access time, and potentially lower cost 
than many other many semiconductor devices, but the 
commercialization has been quite slow because of materials issues 

[6, 7]. FE materials should satisfy the following criteria in order to 
realize a practical FRAM which is compatible to the current 
DRAM technologies, large remnant polarization Pr, and good 
reliabilities. The FE memories have more advantages as a memory 
embedded product than other conventional memories. This is 
because of the non-volatile behavior, high speed operation, low 
power supply, high endurance and good CMOS process 
compatibility [7]. 

 
The size effect of FE has been studied extensively in recent 
years since there is a rapid progress in FE films and 
composite materials. It is well known that the FE 

polarization profile p(z) of semi-infinite and film for surface-
effect study are changed near the surface. Tilley and Zeks [8]
showed that the explicit expressions for p(z) in the second-
order FE films using Jacobi elliptic functions and was later 
improved by Ong et al.[9] The extrapolation length δ was 
introduced in FE size effect study in order to understand the 
behavior of p(z) between bulk and surface area. The p(z) 
enhanced and depressed near the surface for δ < 0 and δ > 0
respectively. Recently, Halif et al.[10, 11] give the overview 
solution of far-infrared first-order FE transmission model 
using Finite-Difference Method (FDM). The same approach 
of numerical method to solve surface effects and size effect 
on first-order FE using Ising model is given by Wang et 
al.[12]. 

 

II.      GENERAL FORMALISM 

 
To perform the results in universal overview, all the 
formalism may be written in dimensionless form using 
conventional scaling [1, 9-11]. In the FE systems, the Gibbs 
free energy are given by 
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where 
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is the Landau-Devonshire (LD) free energy per unit volume. 
For first-order FE, α = 1/2, β = -1/2 and γ = 1/6, while for 
second-order, α = 1/2, β = 1/4  and γ = 0. From (1), i = 0 and 
j = ∞ for semi-infinite system and, i = -l/2  and j = +l/2 for 
film system. T and E represent the electric field and 
temperature in dimensionless form respectively. The last 
term in (1) shows the polarization at the top and bottom of 
films, while for semi-infinite only one polarization plays a 
role for one boundary condition. As mentioned earlier, 
extrapolation length δ is the term to compare the p(z)
between the surface and the bulk region. This term leads to 
the boundary conditions (BC) that have to be satisfied 
namely 
                                  0/)/( =± δpdzdp                (3) 
 



 1st  National Conference on Electronic Design (2005)

78

where the “+” and “-“ sign applies for films case at top (z = 
l/2) and bottom (z = -l/2) of film surface. For semi-infinite 
medium, the BC may be written as (dp/dz) = p/δ. By 
considering the equilibrium state (minimum of f) with the 
final term of (2) omitted, thus the static polarization, p0(z), 
profile is the solution of Euler-Lagrange (EL) equation, and 
expressed by 
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The polarization profile p(z) may be evaluated numerically 
using (4) and BC (3). For the special case (no surface effect)   
δ-1 = 0, p0(z) is equal to the bulk polarization pB. The bulk 
value may be directly calculated from minimum stage of (1) 
by ignoring the last term in equilibrium state (E = 0). pB for 
first order case may be written as 
 
                            tpB −+= 112                      (5) 

This value may be used as a final value in the numerical 
calculation. A detailed explanation is described in section III. 
 
 

III. NUMERICAL APPROACH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Polarization profile schematic illustration for semi-infinite 
ferroelectric system based on Brent’s Method [13]. 

 
Finite-Difference Method (FDM) is a simple and efficient 
method for solving ordinary differential equations (ODEs) in 
problem regions with simple boundaries. The method 
requires the construction of a mesh defining local coordinate 
surface. For each node of this mesh, the unknown function 
values are found, replacing the differential equations by 
difference equations, i.e dy = h(x,y)dx is replaced by ∆y = h(x 
+ ∆x/2 , y + ∆y/2)∆x, where ∆x and ∆y are steps in an 
iterative procedure. The FDM is also a method for solving 
partial differential equations (PDEs). For example a PDE 
will involve a function h(x) defined for all x in the domain 
with respect to some given boundary condition. The purpose 
of the method is to determine an approximation to the 
function h(x). The method requires the domain to be replaced 
by a grid. The central finite difference approximations for 
second-order derivative may be written as 
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which is generated from Taylor Series. By substituting (6) 
into EL equation and assuming that h(x +∆x) = hn+1, h(x - ∆x) 
=     hn -1, and h(x) = hn, thus 
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From Fig. 1, the numerical procedure of p(z) using FDM 
method is started from ferroelectric surface towards bulk, 
where dp/dz = 0. Thus, by using forward different 
approximation for first-order derivative, BC (3) may be 
expressed by 
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Eq. (7) and (8) are used to generate p(z) for ferroelectric 
films. From previous results [10, 11], the polarization profile 
enhanced and depressed at surface for δ < 0 and δ > 0 
respectively. This corresponds to the BC1 and BC2 in Fig. 1. 
For surface enhancement, pB < pS , (S : surface) and for 
surface depressed, pB > pS . By assuming pn = pn -1 for a 
initial value, p*n+1 may be used as temporary values for (7). 
Here, we only give the preliminary result for the surface 
depressed conditions. The overall polarization profile is
generated using (7) until the last two values of p(z) satisfies
BC3; pn – 1 = pn+1 at bulk region. For symmetrical film case, 
the polarization profile is the combination of two semi-
infinite cases [11]. While for asymmetrical case the 
extrapolation length is δ±  ≠ δ±. Here we only highlight the 
results for positive-positive surface conditions. 
 

III. RESULTS & DISCUSSION 
Figure 2(a) and 2(b) show the polarization profile for 
symmetrical and asymmetrical case respectively. As 
mentioned before, we represent only the surface depressed 
conditions as a preliminary result. In Fig. 2(a), three values 
of extrapolation length δ are selected corresponding to the 
numerical limit, 1, 10 and 1000. The first value gives the 
highest surface effect and the last gives the approximation of
the bulk behavior. We only choose the pure ferroelectric 
phase below supercooling temperature to demonstrate the 
film surface effect. For the symmetric film in Fig. 2(a), we 
assumed that δ at both surface is similar.  

As modern electronic devices consist of films on substrate, 
films are generally constrained by asymmetric boundary 
conditions. Thus, the study of polarization profile under the 
influence of substrate is highly important to give more 
realistic result compared to the symmetrical case. Fig. 2(b) 
gives the preliminary result for asymmetric film behavior 
with positive-positive surface conditions. Here we assumed
that the polarization is strongly depressed with δ = 1 at right-
hand side because of mismatched effect between 
ferroelectric film surface and substrate surface. The 
preliminary result here shows that the numerical approach 
using FDM technique may be used to solve the polarization 
profile for both film systems: symmetrical and asymmetrical
case within the framework of TZ model. Currently, Chew et 
al. [14] have presented the mathematical modeling of 
asymmetric ferroelectric film using quasi-numerical 
approach. 

(i) BC1 

(ii) BC2 

(iii) BC3 

Bulk system 
z→ ∞ 

z  = zBULK 

Polarization profile 
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We are currently pursuing to study the far-infrared 
spectroscopy [15] of asymmetric ferroelectric film with 
surface effect with three conditions: (i) positive-positive 
surface conditions; (ii) negative-negative surface conditions; 
and (iii) positive-negative surface conditions, and hope to 
publish the results in near future. 

                                   

Figure 2(a) Numerical computation of polarization profile p(z) for 
symmetric ferroelectric thin film with three value of extrapolation length δ > 
0 where        ( ____ ) δ =  1, ( ……. ) δ =  10 and ( - - - - ) δ =  1000 at below 

supercooling temperature T = -2.0. 

 
Figure 2(b) Numerical computation of polarization profile p(z) for asymmetric 

ferroelectric thin film with positive-positive surface conditions: (  …….  ) δ = 10, and         
( ____  ) δ = 1 at pure FE phase with  temperature same as Fig. 2.0. Assume that the 

right hand-side of the graphs is the ferroelectric film surface with substrate. 
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