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Abstract. This paper studies particle filter algorithm to estimate the angular rate of a satellite without the 
rate sensor measurements. In this work, the performance of the algorithm is studied in terms of capability to 
estimate the angular rate by using the Euler angles attitude information only. The effects of the number of 
particles on the algorithm performance are also investigated in terms of accuracy and computational aspects. 
The performance of the particle filter algorithm is verified using real flight data of Malaysian satellite. 

1 Introduction  
Satellite attitude determination is one of the important 
aspects in Attitude Determination and Control System 
(ADCS) of a satellite. Satellite attitude is important to be 
determined in a satellite to be fed back to controller in 
accomplishing a specific satellite mission such as Earth 
observation, communication, scientific research and 
many other missions. However not all states are directly 
available may be due to malfunction sensor or as a way 
to obtain a substantial reduction of sensors which 
represents a cost and hardware complexity reduction.  

In most practical implementations of ADCS, the 
angular rate and attitude information of a spacecraft are 
obtained respectively from measurement of rate sensor 
such as gyroscopes and also attitude sensor such as sun 
sensor, star sensor, or magnetometer. However, 
gyroscopes are generally expensive and are often prone 
to degradation or failure [1]. Therefore, as an alternative 
or backup system to circumvent the problem of rate 
sensor measurement absence, an estimation to provide 
the information of angular rate by using only the Euler 
angles attitude information is designed. 

Since decades, a great number of research works 
have been devoted to the problem of estimating the 
attitude of a spacecraft based on a sequence of noisy 
vector observations such as [2][3][4][5]. Different 
algorithms have been designed and implemented in 
satellite attitude estimation problem. Early applications 
relied mostly on the Kalman filter for attitude estimation. 
Kalman filter was the first applied algorithm for attitude 
estimation for the Apollo space program in 1960s. Due 
to limitation of Kalman filter which work optimal for 
linear system only, several famous new approaches have 
been implemented to deal with the nonlinearity in 
satellite attitude system including extended Kalman filter 
(EKF) [6][7][4], unscented Kalman filter (UKF) 
[8][9][10], particle filter [11][12][13], and predictive 

filtering [14][15]. EKF is an extended version of Kalman 
filter for nonlinear system whereby the nonlinear 
equation is approximated by linearized equation through 
Taylor series expansion. UKF, an alternative to the EKF 
uses a deterministic sampling technique known as the 
unscented transform to pick a minimal set of sample 
points called sigma points to propagate the non-linear 
functions. EKF and UKF approaches is restricted assume 
the noise in the system is Gaussian white noise process. 
While, particle filter is a nonlinear estimation algorithm 
that approximates the nonlinear function using a set of 
random samples without restricted to a specific noise 
distribution as EKF and UKF.  

In the open literature, spacecraft attitude estimation 
use different attitude representation either Euler angles, 
Rodrigues parameter, or quarternion parameter as their 
kinematic model [16]. Each kinematic model of different 
parameter is governed by different differential equation 
[17]. The researchers also studied the performance of 
estimated states by varying different type of sensor 
measurement such as gyroscope, magnetometer, sun 
sensor or star sensor.  

To the best of authors’ knowledge, there is no study 
that estimates the satellite’s angular rate by 
implementing particle filter algorithm using nonlinear 
Euler angles attitude kinematics model. Particle filter is 
opted in this study because it is still infancy estimation 
algorithm in gyroless satellite attitude application and is 
believed or claimed by some researchers that beyond the 
EKF is the particle filter [21]. The Euler angles attitude 
representation is preferred in this work rather than 
quaternion because it can provide direct physical 
interpretation for analysis, contrary to quaternion. 
Hence, in this work the particle filter algorithm is studied 
in this application and is verified using real flight data of 
Malaysian satellite, RazakSAT.  
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The organization of this paper proceeds as follows. 
Section 2 presents the nonlinear satellite attitude 
dynamics model. Section 3 describes briefly the particle 
filter algorithm used in this work. Section 4 presents and 
discusses the results of the estimation system and 
Section 5 provides the paper's conclusions. 

2 Nonlinear satellite attitude dynamics 
model 

Satellite attitude dynamics model is described by 
both the dynamics equation of motion and kinematics 
equation of motion [18]. 

Dynamic equation of motion relates the satellite’s 
angular rate to the exerted torque as defined by Euler’s 
Moment Equation [18][17] 
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with 
      [        ] is satellite moment of inertia  matrix.  
 ̇  [ ̇    ̇    ̇ ]  is angular acceleration vector.  
  [          ] is angular rate vector. 
   [        ] is space environmental disturbances 
torque vector. 

 
For low Earth orbit satellite, gravity gradient torque 

must be taken into consideration as part of external 
torque since it is continuously acting on the spacecraft 
body and influence the satellite’s attitude motion.  The 
external torque dominated by gravity gradient torque is 
written as [17][19]    
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While, kinematic equation of motion relates the 
attitude parameter to the satellite’s angular rate. In this 
work, Euler angles parameter is preferred to represent 
the satellite’s attitude as its straightforward physical 
interpretation for analysis. Euler angles are defined as 
the rotational angles about the body axis as follows:   is 
rotational angle about X-axis (roll);   is rotational angle 
about Y-axis (pitch); and   is rotational angle about Z-
axis (yaw). The kinematic equation of Euler angles 
parameter using       (or some literature use 
notation 3-2-1) sequence rotation is  
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where c, s and t denote cosine, sine, and tangent 
functions, respectively. While,     is the orbital rate of 
the spacecraft. 

A complete formulation of the satellite attitude 
dynamics for low Earth orbit satellite is obtained by 
combining both the dynamics equation of motion under 
influence of gravity gradient torque with the  kinematics 
equation of motion such that 
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3 Particle filter algorithm 

Particle filter or also known as Sequential Monte Carlo 
(SMC) is an on-line, recursive algorithm trying to 
estimate the true state of a nonlinear system where only 
some noisy measurements are available. Particle filter 
does not require any assumption about the state-space or 
the noise of the system to be Gaussian as restricted in 
conventional methods EKF and UKF. The underlying 
idea behind the approach is to approximate the posterior 
density using a set of particles. Particle filter was 
developed in 1993 by Gordon et al [20] under the name 
of the ‘bootstrap filter algorithm’ by including the 
resampling technique to reduce the degeneracy problem 
of the existing Monte Carlo approach.  

Particle filter algorithm is described as follows [18]. 
Given the nonlinear system dynamics and measurement 
described by continuous-time model [19] 

 ̇   ( )                                 (17)  
   ( )         (18) 

with      is the state vector and      is the output 
vector,   and   denote the noise or uncertainty vector in 
the state and measurement respectively. Then the 
continuous-time model in Equation (17) and (18) is 
transformed into the discrete-time model such that  
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Here the subscript of the variables denotes the time step, 
while      and    are state and measurement noises 
respectively with variance    and   . Hence, the 
estimated state is obtained through the following step 
[21][22]:  
 
Step 1: Set the number of particles    and set the 

initialization 
 Initial state estimate:     ̂   ̂         (21) 
 Initial particles:      ̂     for             (22) 
 Initial weight:      

 
  

   for                (23) 
Step 2: Repeat  

(i) Sequential importance sampling 
 Draw particles:     

      (       (     )   ) for                 
        (24) 

 Compute the weight for each particle:  
                    (    (   )   ) for            

     (25) 
 Calculate the total weight: 

   ∑      
                (26) 

 Normalize the weight:      

      
   

  for                    (27) 
(ii) Resampling (To eliminate samples with low 

importance weights) 
 Initialize cumulative sum of weight (CSW):     

               (28) 
 Construct CSW:   

                 for                    (29) 
 Start at the bottom of the CSW:                   (30) 
 Draw a starting point:        *  

 
  
+                (31) 

 For              
o Move along the CSW:   

      
 
  
(   )                     (32) 

o Set if      , then update                  (33) 
o Assign particles:         

                 (34) 
o Assign weight:       

   
  

          (35) 
 (iii) State estimation  

 Compute estimated state:     
 ̂    ∑         

           (36) 

4 Result and discussion 
In this section, the performance of particle filter as an 
estimation algorithm to estimate the angular rate without 
the rate sensor measurements is investigated.  

The performance of the estimation using particle 
filter algorithm is validated using real sensors data from 
the RazakSAT satellite. RazakSAT is a Malaysian 
satellite which was launched into low Earth orbit near 
Equatorial in 2009.  In the mission, the quaternion 

attitude was provided by using sun sensor, one of the 
attitude sensor, while the angular rate was provided by 
gyroscope sensor. The available measurements are for 
about six orbits sequentially, available to the ground 
system at a sampling rate of about 1 minute. The sample 
of RazakSAT’s telemetry data is shown in Fig. 1, while 
the satellite’s characteristics of RazakSAT are given in 
Table 1, which was provided by Astronautic Technology 
Sdn Bhd (ATSB), the Malaysian company that 
responsible for RazakSAT’s mission.  

 

 
Fig. 1. Sample of RazakSAT telemetry data. 

 
Table 1. RazakSAT’s characteristics. 

Parameter       Values 
Moment of inertia,    25.4 kg.m2 
Moment of inertia,    26.2 kg.m2 
Moment of inertia,    21.0 kg.m2 
Orbital rate,    0.001063 rad/s or 0.0609 deg/s 

 
The first study is to validate the capability of particle 

filter to estimate the angular rate by using measurement 
Euler angles attitude roll, pitch and yaw only. The 
accuracy of the estimated states is assessed by 
comparing the estimated states with the real states 
provided by sensor data of RazakSAT. Figs. 2, 3, and 4 
show comparisons between the estimated angular rates 
using particle filter algorithm and the real angular rates 
measurement provided by gyroscope sensor in 
RazakSAT mission, respectively around X-axis, Y-axis, 
and Z-axis. From all the three figures, it is observed that 
the behaviour of estimated states does not scattered at 
random, otherwise they seem deviate from the 
approximately zero values of the real states as measured 
by gyroscope. This deviation is due to mis-modeling and 
the influence of other unmodeled space environmental 
disturbance torques including aerodynamic, solar 
radiation pressure and Earth magnetic torques. However 
as overall, the trendlines of the estimated states are still 
within 0.1 deg/s ranges which are suitable for moderate 
accuracy attitude determination mode such as during 
housekeeping and detumbling task, but unsuitable for 
pointing mode that requires more precise accuracy such 
as during imaging task. 

 

Q1 Q2 Q3 Q4 X Y Z
10:58:51 -0.775506 0.451796 -0.431151 0.092625 -0.008350 0.031246 0.048060
10:59:51 -0.218972 0.800993 -0.551323 0.080649 0.000562 -0.000396 0.002956
11:00:51 -0.209406 0.802330 -0.549578 0.101878 0.000110 -0.000117 0.000048
11:01:54 -0.209518 0.804907 -0.545130 0.105169 0.000717 0.000156 -0.000647
11:02:54 -0.210605 0.801599 -0.550194 0.101838 0.000130 -0.000080 0.000033
11:03:56 -0.211824 0.801596 -0.549643 0.102305 0.000011 0.000216 -0.000190
11:04:56 -0.210696 0.800860 -0.551182 0.102125 0.000087 0.000042 -0.000018
11:05:56 -0.210882 0.800777 -0.551268 0.101926 0.000031 0.000016 -0.000050
11:06:56 -0.211182 0.800579 -0.551430 0.101980 0.000149 0.000080 0.000033
11:07:56 -0.211328 0.800571 -0.551364 0.102101 0.000147 -0.000235 0.000191
11:08:56 -0.211150 0.800743 -0.551232 0.101833 -0.000098 0.000155 0.000025
11:09:56 -0.211046 0.800647 -0.551360 0.102107 0.000025 -0.000089 0.000095
11:10:56 -0.211360 0.800523 -0.551463 0.101875 0.000015 0.000042 0.000050
11:11:56 -0.211435 0.800452 -0.551498 0.102084 -0.000019 -0.000171 0.000104
11:12:56 -0.211487 0.800628 -0.551240 0.101992 0.000015 0.000056 0.000081

GYRO OUTPUT (deg/s) TIME ATTITUDE (QUATERNION)

3

MATEC Web of Conferences 150, 06010 (2018)	 https://doi.org/10.1051/matecconf/201815006010
MUCET 2017



 

* Corresponding author: hazadura@unimap.edu.my 

 
Fig. 2. Comparison between estimated and real angular rate around X-axis. 

 

 
Fig. 3. Comparison between estimated and real angular rate around Y-axis. 

 

 
Fig. 4. Comparison between estimated and real angular rate around Z-axis. 

 
The accuracy of the estimated states is validated 

using Root Mean Squared Error (RMSE) with  

     √∑ (                   )
  

   
    (37) 

The RMSE is a frequently used measure of the 
differences between values estimated by an estimator 
and the values actually observed. It is a representative of 
the size of an average error. The RMSE value of the 
estimated angular velocity is tabulated in Table 2. From 
the table, the average error between the estimated and 
the real states are 0.0339 deg/s, 0.0371 deg/s, 0.0387 
deg/s respectively for angular rate around X-axis, Y-
axis, and Z-axis. As overall it can be deduced that the 
particle filter algorithm is able to provide the information 
of angular rate in less than 0.1 deg/s average error which 
is a quite good performance filter.  

 
Table 2. RMSE of estimated angular rate. 

States    RMSE value 
Angular rate around X-axis,    0.0339 deg/s 
Angular rate around Y-axis,    0.0371 deg/s 
Angular rate around Z-axis,    0.0387 deg/s 
 

The second study is to investigate the effects of 
number of particles,    on the particle filter algorithm 
performance in terms of accuracy and computational 
aspects.  The accuracy and computational aspects are 
assessed respectively using norm of error and CPU time.  
Norm of error and CPU time generated for different 
values of the number of particles are tabulated in Table 
3. The divergence tracks are resulted for the number of 
particles     .  This is because very small number of 
particles is not enough to represent the density hence 
gives divergence result. Fig. 5 plots the norm of error as 
a function of the number of particles for       
    . It is observed that the norm of error is drastically 
decreased until values about 0.07 deg/s at the number of 
particles      . However, note that as     is increased 
beyond 100, there are insignificant changes of the norm 
of error values. This is because if the particle numbers 
are fewer, the importance distribution is not accurate 
enough to represent the real distribution hence affect the 
estimation accuracy. While the plot of the CPU time as a 
function of the number of particles for            
is shown in Fig. 6. It is observed that CPU time increase 
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linearly as the number of particles increased. This is 
because the intensive memory and computational effort 
is required when the number of particles is increased. 
Hence it is concluded that the optimal value of number 
of particles is        for efficient implementation in 
this problem.  

All the studies was performed by using Matlab 
R2013(a) in Windows 7 operation system with the 
specification of Intel Core i7, 2.0GHz CPU and 4GB 
RAM. 

 
Table 3. Norm of error and CPU time with different values of 

the number of particles. 
Number of 
particles,    

Norm of error, ||e|| 
(deg/s) 

Computation/ 
CPU time, t                

(s) 
1 NaN - 
2 NaN - 
3 NaN - 
4 NaN - 
5 NaN - 
6 0.1199 0.645 
7 0.1053 0.710 
8 0.0763 0.814 
9 0.0743 0.910 

10 0.0717 0.998 
100 0.0634 9.327 
200 0.0643 18.652 
300 0.0632 29.314 
400 0.0638 38.541 
500 0.0658 48.019 
600 0.0649 58.673 
700 0.0650 67.377 
800 0.0646 75.940 
900 0.0650 85.399 
1000 0.0658 95.131 

 
 

 
Fig. 5. Norm of error versus number of particles. 

 

 
Fig. 6. CPU time versus number of particles. 

5 Conclusion 
In this paper, particle filter estimation algorithm to 

provide the angular rate information during the absence 
of rate sensor circumstances was studied. The capability 
of the algorithm to provide the angular rate information 
using Euler angles attitude only is validated using real 
flight data of RazakSAT, the Malaysian satellite. The 
results show that the algorithm is able to provide the 

information of satellite angular rate within 0.1 deg/s 
accuracy, which is suitable for moderate accuracy 
attitude determination such as during housekeeping and 
detumbling mode. Besides, the effects of number of 
particles on the particle filter algorithm performance are 
also investigated in terms of accuracy and computational 
aspects through assessment of the error norm and CPU 
time.  The results show that it is important to determine 
the optimal value of number of particles for efficient 
implementation. This work can be used as an alternative 
or backup attitude determination system of a low Earth 
orbit satellite during the absence of angular rate 
measurement due to unexpected sensor failure or for cost 
reduction. Future work will compare the PF algorithm 
with the extended Kalman filter (EKF), the most widely 
employed algorithm in spacecraft community both in 
real practice and theoretical study. 
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