

PREPARATION AND PROPERTIES OF MICROCRYSTALLINE-

OTHISTEPHISP

A Project Report Submitted in Partial Fulfillment of the Requirements

for the degree of Master of Science - Polymer Engineering

School of Materials Engineering

Universiti Malaysia Perlis

October 2010

APPROVAL AND DECLARATION SHEET

This thesis titled Preparation and Properties of Microcrystalline-Cellulose-Fiber from Coconut Trunk Fiber filled SBR/BR vulcanizates was prepared and submitted by Siti Salwa Mohammad Shirajuddin (Matrix Number: 0931620403) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the award of degree of Master of Science (Polymer Engineering) in University Malaysia 18/nal cop Perlis (UniMAP).

Check and Approved by protected by Dr. Hakimah Osman OTHISItem Pensyarah Pusat Pengajian Kejuruteraan Bahan Universiti Malaysia Perlis (DR. HAKIMAH OSMAN)

Supervisor

School of Materials Engineering

Universiti Malaysia Perlis

School of Materials Engineering

Universiti Malaysia Perlis

2010

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's full name : Date of birth : Title :	SITI SALWA MOHAMMAD SHIRAJUDDIN 26 OCTOBER 1987 PREPARATION AND PROPERTIES OF MICROCRYSTALLINE- CELLULOSE-FIBER FILLED SBR/BR BLENDS		
Academic Session :	2009/2010		
I hereby declare that the the placed at the library of Unit	MAP. This thesis is classified as :		
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*		
	(Contains restricted information as specified by the organization where research was done)*		
OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)		
l, the author, give permissi of research or academic ex	I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of years, if so requested above).		
	Certified by:		
Liti Alug	spro		
SIGNATURE	SIGNATURE OF SUPERVISOR		
871026-09-5196	DR. HAKIMAH OSMAN		
(NEW IC NO. / PASSPOI	RT NO.) NAME OF SUPERVISOR		
Date: 4 /03/2011	Date: 4/3/2011		
	the second second second in the second second		
	the second the composite to the second second		
	in the second		

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ABSTRACT

Preparation and properties of non-microcrystalline cellulose (non-MCC) and microcrystalline cellulose (MCC) filled SBR/BR blends have been investigated. This research is divided into two main series, and each series undergo ageing test to the samples prepared. For first serie, the effect of different fillers, filler loading and ageing on properties of filled SBR/BR blends were studied. The results for curing characteristics, showed that both scorch time and cure time increased for non-MCC but decreased for MCC, whereas the torque and viscosity increased with incorporation of both filler in SBR/BR blends. MCC filled SBR/BR blends showed shorter scorch time and cure time but higher viscosity and torque value than non-MCC filled SBR/BR blends. The mechanical properties of MCC filled SBR/BR blends shows better tensile properties compared to non-MCC filled SBR/BR blends as filler loading increase up to 6 phr. The SEM result also shows that the fiber are well wetted and the pulled out of fiber from the rubber matrix is minimum up to 6 phr for both non-MCC and MCC filled SBR/BR blends. The thermal stability of MCC filled SBR/BR blends was better enhanced than that of non-MCC filled SBR/BR blends. For second series, the effect of reinforcing efficiency between hybrid MCC/silica (untreated and treated) filled SBR/BR have been investigated. At lower filler ratio of MCC, composite shows better tensile properties, thermal analysis, and resistance to aging, especially in the presence of (3aminopropyl)trietoxysilane, 3-APE. However, the composites in the presence of coupling 3-APE show lower tensile properties at higher filler ratio of MCC, 10/0. The SEM result of hybrid MCC/untreated silica and MCC/treated silica shows many holes remaining after the filler are pulled out from the rubber matrix and un-wetted filler on the surface particularly at highest silica content (0/10). From the thermal analysis observation, the MCC/treated silica filled SBR/BR blends show better thermal stability compared than MCC/untreated silica filled SBR/BR blends. Tensile properties for MCC and non-MCC filled SBR/BR blends, hybrid MCC/untreated silica and MCC/treated silica filled SBR/BR blends after ageing shows lower value than before ageing. From the SEM observation, the surfaces of all composites were remarkably changed to rougher surface with continuous crack formation compared than all composites before ageing. The This item is protected by thermal stability for all composites after ageing is lower than composites before ageing.

ABSTRAK

Penyediaan dan sifat-sifat campuran getah stirena-butadiena (SBR)/getah butadiene (BR) terisi bukan-mikroberhablur selulosa (bukan-MCC) dan mikroberhablur selulosa (MCC) telah dikaji. Ujikaji ini terbahagi kepada dua bahagian, dan setiap siri telah dilakukan ujian penuaan ke atas sampel yang disediakan. Bagi siri pertama, kesan pengisi yang berbeza, pembebanan pengisi dan penuaan terhadap sifat-sifat campuran SBR/BR berpengisi telah dikaji. Keputusan-keputusan bagi sifat-sifat pematangan telah menunjukkan bahawa kedua-dua masa skorj dan masa pematangan bertambah bagi bukan-MCC tetapi menurun bagi MCC, manakala tork dan kelikatan meningkat dengan penambahan kedua-dua pengisi ke dalam campuran SBR/BR. Campuran SBR/BR menunjukkan masa skorj dan masa pematangan yang lebih pendek tetapi nilai tork dan kelikatan yang lebih tinggi daripada campuran SBR/BR terisi bukan-MCC. Sifat-sifat mekanikal campuran SBR BR terisi MCC menunjukkan sifat-sifat tensil yang lebih baik berbanding campuran SBR/BR terisi bukan-MCC dengan peningkatan pengisi sehingga 6 bsg. Keputusan SEM menunjukkan gentian dibasahi dengan baik dan penarikan keluar gentian daripada matrik adalah minimum sehingga 6 bsg bagi kedua-dua campuran SBR/BR terisi bukan-MCC dan MCC. Kestabilan terma bagi campuran SBR/BR terisi MCC adalah lebih baik berbanding campuran SBR/BR terisi bukan-MCC. Bagi siri kedua, kesan kecekapan pengukuhan antara campuran SBR/BR terisi MCC hibrid/silika (tidak dirawat dan dirawat) dan penuaan terma telah dikaji. Pada nisbah pengisi MCC yang rendah, komposit menunjukkan sifat-sifat tensil, analisis terma, dan ketahanan terhadap penuaan yang lebih baik terutama dengan kehadiran (3-aminopropil) trietoksilana, 3-APE. Namun, komposit dengan kehadiran 3-APE menunjukkan sifat-sifat tensil yang rendah pada nisbah pembebanan pengisi MCC paling tinggi, 10/0. Keputusan SEM campuran SBR/BR terisi MCC hybrid/silica (tidak dirawat dan dirawat) menunjukkan banyak lubang terbentuk selepas pengisi ditarik keluar dari matriks getah dan pengisi yang tak dibasahi permukaannya terutama pada kandungan silika tertinggi. Daripada pemerhatian kestabilan terma, campuran SBR/BR terisi hibrid MCC/silika dirawat menunjukkan kestabilan terma yang lebih baik berbanding campuran SBR/BR terisi hibrid MCC/silika tidak dirawat. Sifat-sifat tensil bagi campuran SBR/BR terisi MCC dan bukan-MCC, campuran SBR/BR teris hibrid MCC/silika dirawat dan MCC/silika tidak dirawat selepas penuaan menunjukkan nilai yang lebih rendah berbanding sebelum penuaan. Bagi pemerhatian SEM, permukaan bagi semua komposit menunjukkan perubahan kepada permukaan yang lebih kasar dengan pembentukan retak yang berterusan berbanding komposit sebelum penuaan. Kestabilan terma bagi semua komposit selepas penuaan adalah lebih rendah berbanding dengan sebelum penuaan. Thister

ACKNOWLEDGEMENT

First of all, thank to Allah for giving me the strength and confident to finish my research work and my report. Although, there is a lot of challenge and things that hinders, I manage to finish this project. I would like to take this opportunity to express my gratitude and my sincere appreciation to my project supervisor, Dr. Hakimah Osman for her supervision, guidance and constructive comments through the duration of this project.

In addition, a sincere thanks are also extended to all the plvs whose skills and expertise as well as their patience in guiding me throughout this project. Special thanks to all the technical staff of the Materials Engineering School, UniMAP for the favorable help in the success of this project.

Sincere and great thank to all my friends and course mates for their moral support either directly or indirectly for helped me throughout the project.

Ginally, my deepest appreciation to my beloved parents, Mohammad Shirajuddin bin Khairuddin and Norhaida binti Abdullah, and my family members who give a strong support to do my work. Thanks for your blessing, caring and loving.

DECLARATION

I hereby declare that this thesis is based on my original work except for quotations and citations, which has been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Unit AP or other institutions.

LWA BINTI MOHAN ate: 4 MARCH 2015 P CTHISITEM Date:

TABLE OF CONTENTS

	Page
Abstract	i
Abstrak	iii
Acknowledgement	v
Declaration	vi
List of Tables	xi
List of Figures	xiii
List of Symbols, Abbreviations or Nomenclature	xvii
Chapter 1 1.0 INTRODUCTION 1.1 Micro cellulose Reinforced Rubber Vulcanizates	1
1.2 Application and Future Trends	3
1.3 Problem Statement	4
1.4 Research Objectives	6
1.5 Outline of Thesis Structure	6
CHAPTER 2	
2.0 LITERATURE REVIEW	

2.1	Ru	obers	8
2	.1.1	Natural Rubber	9

2.1.2 Synthetic Rubber	13
2.1.2.1 Styrene Butadiene Rubber	14
2.1.2.2 Butadiene Rubber	16
2.2 Fillers in Rubber Composites	17
2.2.1 Fillers from Non-Renewable Resource	19
2.2.1.1 Carbon Black	19
2.2.1.2 Silica	21
2.2.2 Fillers from Renewable Resource	25
2.2.2.1 Natural Fibers	27
2.2.2.2 Microcrystalline Cellulose	30
2.3 Vulcanized Rubbers	31
2.3.1 Vulcanization Process	34
2.3.2 Sulphur Vulcanization	35
2.3.3 Characterization of The Vulcanization Process	38
2.4 Hybrid Fillers	40
2.5 Effect of Thermal Aging on Rubber Vulcanizates	41
©	
3.0 RESEARCH METHODOLOGY	
3.1 Materials	43
3.2 Methodology	
3.2.1 Microcrystalline-Cellulose Fiber Preparation	44
3.2.2 Rubber Compounding Process for Different Fillers, Filler	
Loading and Ageing Properties of Filled SBR/BR blends	46

3.2.3 Partial Replacement of Silica (Treated and Untreated)	
with MCC for a New Rubber Compound	48
3.2.3.1 Silica treatment	48
3.2.3.2 Rubber Compounding Process	49
3.2.4 Thermal Aging of MCC Filled in Rubber Vulcanizates	50
3.3 Characterizations and Testing	50
3.3.1 Rheometer	50
3.3.2 Mechanical Properties	51
3.3.3 TGA Analysis	51
3.3.4 Fourier transform-infrared (FTIR)	51
3.3.5 Scanning electron microscopy (SEM)	52
HAPTER 4	
0 RESULTS AND DISCUSSION	
4.1 FILLER CHARACTERIZATION	
4.1.1 Introduction	53
(1.).2 Particle Size Analysis	54
4.1.3 Morphological Study	56
4.1.4 Thermal Analysis	57

4.2 EFFECT OF DIFFERENT FILLERS, FILLER LOADING

AND AGEING ON PROPERTIES OF FILLED SBR/BR BLENDS

4.2.1	Introduction	
-------	--------------	--

C

4.

60

4.2.2	Curing Characteristic	61
4.2.3	Viscosity	64
4.2.4	Mechanical Properties	65
4.2.5	Morphological Properties	71
4.2.6	FTIR Analysis	76
4.2.7	Thermal Properties	78
4.3 CC	MPARISON OF REINFORCING EFFICIENCY OF	
HY	BRID FILLERS BETWEEN UNTREATED AND TREATED	
SI	LICA WITH MCC IN UNAGED AND AGED SBR/BR BLEND	S
4.3.1		
	Introduction	85
4.3.2	Introduction Curing Characteristic	85 85
4.3.2 4.3.3	Introduction Curing Characteristic	85 85 88
4.3.2 4.3.3 4.3.4	Introduction Curing Characteristic Viscosity Mechanical Properties	85 85 88 89
4.3.2 4.3.3 4.3.4 4.3.5	Introduction Curing Characteristic Viscosity Mechanical Properties Morphological Properties	85 85 88 89 96
4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	Introduction Curing Characteristic Viscosity Mechanical Properties Merphological Properties FTIR Analysis	85 85 88 89 96 100

CHAPTER 5

5.0 CONCLUSIONS AND RECOMMENDATIONS FOR 1	FUTURE WORKS
5.1 Conclusions	110
5.2 Recommendations for Future Works	112
REFERENCES	xix

LIST OF TABLES

Table	s	Page
2.1	Typical content of natural rubber (Barlow & Fred, 1988)	10
2.2	Specification of SMR	13
2.3	Common synthetic rubbers	15
2.4	Relationship between particle size and reinforcement effect on rubber	
	vulcanizate	18
2.5	The basic recipe for the sulphur vulcanization system	
	(Rodgers & Waddel, 2005)	36
2.6	Sulphur vulcanization system (Ismail & Hashim, 1998)	37
2.7	Aging process or agent for polymers and elastomers	42
3.1	Materials in this study	43
3.2	Recipes of the non-MCC and MCC filled SBR/BR blends	46
3.3	Recipes of the hybrid MCC/untreated silica and MCC/treated	silica filled
	SBR/BR blends	48
4.1	Characterization results of fillers	55
4.2	Thermogravimetric analysis parameter of non-MCC and MCC in SBI	R/BR
	filled blends	82
4.3	Thermogravimetric analysis parameter of non-MCC and MCC in SBI	R/BR
	filled blends after aging	83
4.4	Thermal degradation rate (weight loss, %/min) of non-MCC and MC	с
	filled SBR/BR blends	83

4.5	Thermal degradation rate (weight loss, %/min) of non-MCC and MCC	
	filled SBR/BR blends after aging	84
4.6	Thermogravimetric analysis parameter of hybrid MCC/silica (untreated	
	and treated) filled SBR/BR blends	107
4.7	Thermogravimetric analysis parameter of hybrid MCC/silica (untreated	
	and treated) filled SBR/BR blends after aging	108
4.8	Thermal degradation rate (weight loss, %/min) of hybrid MCC/silica	
	(untreated and treated) filled SBR/BR blends	108
4.9	Thermal degradation rate (weight loss, %/min) of hybrid MCC/silica	
	(untreated and treated) filled SBR/BR blends after aging	109
	×edt	
	xect	
	Pro	
	in the second seco	
	. Ster	
	This	

LIST OF FIGURES

Figure	25	Page
2.1	Leaf and seed from the Hevea braziliensis tree	9
2.2	The chemical structure of cis-1,4-polyisoprene	11
2.3	The chemical structure of cis-1,4-polyisoprene and trans-1,4-polyisoprene	ne 14
2.4	Chemical structure of SBR	16
2.5	Chemical structure of BR	17
2.6	Model of SiO ₂ particle, illustrating the germinal isolated, and vicinal	
	hydroxyl groups	23
2.7	Morphology of silica	24
2.8	Condensation reaction between silica and silane coupler followed	
	by sulfur crosslinking between coupler and elastomer	26
2.9	Molecular structure of cellulose (Kamel et al., 2008)	29
2.10	The vulcanization process in rubber (Coran et al., 1978c)	32
2.11	Vulcanization of rubber composites by rheometer	38
3.1	MCC preparation	45
3.2	Rubber compounding process for non-MCC and MCC filled SBR/BR	
	blends	47
3.3	Partial replacement of silica(treated and untreated) with MCC filled	
	SBR/BR blends	49
4.1	Micrograph of non-MCC	56
4.2	Micrograph of MCC	56

4.3	Micrograph of silica	56
4.4	TGA curve of the non-MCC	58
4.5	DTG curve of the non-MCC	58
4.6	TGA curve of the MCC	59
4.7	DTG curve of the MCC	59
4.8	Variation of TS2 with filler loading of non-MCC filled SBR/BR blends	62
4.9	Variation of T ₉₀ with filler loading of non-MCC and MCC filled SBR/BR	
	blends	63
4.10	Relationship of torque value of non-MCC and MCC filled SBR/BR	
	blends with various filler loading	64
4.11	Mooney viscosity-filler loading of non-MCC and MCC filled SBR/BR	
	blends	65
4.12	The effect of filler loading on tensile strength of non-MCC and MCC	
	filled SBR/BR blends and its aged	67
4.13	Effect of elongation at break-filler loading of non-MCC and MCC	
	filled SBR/BR blends and its aged	69
4.14	100% modulus of non-MCC and MCC filled SBR/BR blends and its aged	
	at various filler loading	70
4.15	Micrograph of tensile fracture surfaces of non-MCC filled SBR/BR blends	at
	different filler loading	73
4.16	Micrograph of tensile fracture surfaces of MCC filled SBR/BR blends	
	at different filler loading	74

4.17	Micrograph of tensile fracture surfaces of non-MCC filled SBR/BR blends		
	after aging at different filler loading	75	
4.18	Micrograph of tensile fracture surfaces of MCC filled SBR/BR blends		
	after aging at different filler loading	75	
4.19	Results of FTIR analysis of non-MCC and MCC in SBR/BR blends and		
	its aged	78	
4.20	TGA curves of non-MCC and MCC filled SBR/BR blends at certain		
	filler loading and its aged	81	
4.21	DTG curves of non-MCC and MCC in SBR/BR blends and its aging at		
	certain filler loading	82	
4.22	Variation of TS ₂ with MCC/silica hybrid filler ratio (phr/phr) filled		
	SBR/BR blends	86	
4.23	Variation of T ₉₀ with MCC/silica hybrid filler ratio (phr/phr) filled		
	SBR/BR blends	87	
4.24	Relationship of torque value in SBR/BR blends with various MCC/silica		
	hybrid filler ratio	88	
4.25	Mooney viscosity versus MCC/silica (treated and untreated) hybrid		
	filler ratio filled SBR/BR blends	89	
4.26	The effect of MCC/silica hybrid filler ratio on tensile strength of hybrid		
	MCC/silica (untreated and treated) filled SBR/BR blends and its aged	93	
4.27	The effect of MCC/silica hybrid filler ratio on elongation at break		
	of hybrid MCC/silica (untreated and treated) filled SBR/BR blends and		
	its aged	93	

4.28	The effect of MCC/silica hybrid filler ratio on 100% modulus of hybrid	
	MCC/silica (untreated and treated) filled SBR/BR blends and its aged	95
4.29	Micrograph of tensile fracture surfaces of MCC/untreated silica hybrid	
	filled SBR/BR blends at different filler ratio	97
4.30	Micrograph of tensile fracture surfaces of MCC/treated silica hybrid	
	filled SBR/BR blends at different filler ratio	98
4.31	Micrograph of tensile fracture surfaces of MCC/untreated silica hybrid	
	filled SBR/BR blends at different filler ratio after aging	99
4.32	Micrograph of tensile fracture surfaces of MCO treated silica hybrid	
	filled SBR/BR blends at different filler ratio after aging	99
4.33	Results of FTIR analysis of hybrid MCC/untreated silica and hybrid	
	MCC/treated silica in SBR/BR blends and its aging	102
4.34	TGA curves of hybrid MCC/silica (untreated and treated) filled SBR/BR	
	blends at certain MCC/silica hybrid filler ratio and its aged	106
4.35	DTG curves of hybrid MCC/silica (untreated and treated) filled SBR/BR	
	blends at certain MCC/silica hybrid filler ratio and its aged	107

LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURES

3-APE	(3-aminopropyl)trietoxysilane
6ppd	N-(1,3-dimethyl)-N'-phenyl-p-phenylenediamine
BIIR	Bromo Butyl Rubber
BR	Butadiene Rubber
CBS	N-cyclohexyl-2-benzothiazolesulfonamide
CIIR	Chloro Butyl Rubber
CTF	Coconut Trunk Fiber
CV	Conventional Vulcanization
DPG	Diphenylguanidine
DP	Degree of polymerization
DRC	Dry Rubber Content
EV	Efficient Vulcanization
FTIR	Fourier Transform Infrared Spectroscopy
IIR ©	Butyl Rubber
IR	Isoprene Rubber
MBT	Mercaptobenzothiozole
MCC	Microcrystalline Cellulose
MWD	Molecular Weight Distribution
NBR	Nitrile Rubber
NF	Natural Fiber

NR	Natural Rubber
PRI	Plastic Retention Index
SBR	Styrene Butadiene Rubber
SEM	Scanning Electron Microscopy
SLR	Sri Lanka Rubber
SMR	Standard Malaysian Rubber
StAc	Stearic Acid
TGA	Thermogravimetric Analysis
ТМР	Thermomechanical Pulp
TSR	Technically Specified Rubber
TTR	Technically Thailand Rubber
ZnO	Zinc Oxide
	ero en
	n'is
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Ô	

#### **CHAPTER 1**

#### INTRODUCTION

# 1.1 Micro Cellulose – Reinforced Filler Rubber Vulcanizate

Microcrystalline cellulose (MCC) is a purified, partially depolymerised cellulose that occurs as a white and odourless crystalline powder. It is a highly crystalline particulate cellulose made up of a chain of about 250 glucose molecules. In nature, several microcrystals are hinged together and surrounded by amorphous cellulose to form a cellulose microfibril. If the amorphous cellulose is removed, the resultant product is called level off DP (degree of polymerization) microcrystalline cellulose. MCC can be made from any material that is high in cellulose ranging from pure cellulose, commercial grade cellulose to lignocellulosic materials. (Adel *et al.*, 2010).

Natural fiber (NF) has been investigate as potential sources to produce MCC, since woody plants and cotton were quite expensive. Reports have shown that MCC can be produced from water hyacinth (Gaonkar & Kulkarni, 1987), coconut shells (Gaonkar & Kulkarni, 1989), groundnut shell and rice husks (Okhamafe *et al.*, 1991), cereal straw (Jain *et al.*, 1983), bagasse and corn cob (Okmahafe *et al.*, 1995), soy bean, oath and rice hulls as well as sugar beet pulp (Hanna *et al.*, 2001). Luffa cylindrica (Ohwoavworhua *et al.*, 2001).

*al.*, 2004) orange mesocarp. (Ejikeme, 2008) and rice and bean hulls (Adel *et al.*, 2010) have also been studied as potential sources of MCC. But, for the best of our knowledge, MCC made from coconut trunk fiber (CTF) has not studied yet.

Since cellulose from different sources differs in properties (crystallinity, moisture content, surface area and porous structure, molecular weight, etc.) different properties of MCC obtained from different sources are expected; and the conditions of hydrolysis also affect the properties of the obtained MCC (El-Sakhawy & Hassan., 2007). The hydrolysis of cellulose to obtain MCC can be accomplished using mineral acid, enzymes or microorganisms. Although enzymatic methods are desirable because glucose, a useful by-product is created, these methods are more expensive and create MCC products having a lower crystallinity. Thus acid hydrolysis or hydrolytic degradation, typically with a strong mineral acid such as hydrogen chloride is the conventional method of choice for manufacturing MCC (Hanna *et al.*, 2001). The acid hydrolysis process produces a MCC of predominantly coarse particulate aggregates, typically having a mean size range of about 15 to 40 microns.

Nowadays, MCC has been widely used especially in food, cosmetic and medical industries as a water-retainer, a suspension stabilizer, a flow characteristics controller in the system used for final products, and as a reinforcing agent for final products such as medical tablets. There have been some studies on MCC as a reinforcing filler in plastic composites in the past few years (Laka *et al.*, 2003; Reinsch & Kelley, 1997; Kubat &

Klason, 1983) However, little has been reported about using MCC as a reinforcing filler in rubber vulcanizates.

#### 1.2 Application and Future Trends

The widespread of the market in natural fiber reinforced composites is that of rubber composites ranging from household to industrial products, such as rubber bands, pencil erasers, ball for sports, aircraft tires and inner tube. Recently, the tire manufacturers is intensely interested in natural fiber composites because of inexpensives, readily available, light in weight and renewable (Bai & Li, 2009). As for rubber industry especially in the rubber tire application, MCC used as a reinforcing filler to replace current fillers in tire application, which are carbon black and silica. Natural fiber reinforced rubber composites combine the elasticity of rubber with the strength and stiffness of the fibre.

Other potential application for natural fiber reinforced rubber composites are door and window profiles, hoses, belts, matting, flooring and dampeners (antivibration mounts) for the automotive industry in what is known as the 'under the bonnet' products. Additionally, natural fiber reinforced composites are also use in textile industry because of its excellent elongation and recovery properties. Gloves (medical, household and industrial) and toy balloons are also other large consumer of rubber composites (Nunes & Visconte, 2000; Haghighat *et al.*, 2005).