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omputational Fluid Dynamics (CFD) is the application of the numerical

method to solve fluid flow problems. With the development of accurate

and robust numerical algorithms, CFD has now matured to where it
used as a key tool for a broad range of applications such as aerospace,
automotive and various engineering design process.

As CFD becomes increasingly roufine, it is
even more prudent that attention is focused
on developing a method with robustness,
accuracy and generality and which must be
able to compute stable and accurate solutions
under various flow conditions. In addition, as
the regime of application is extended, e.g. to
distinct fluid flow regimes as a function of Mach
number or to different sets of conservation
laws, robustness and accuracy should be
maintained (1). The Mach number represents
the ratio of the local flows speed and the local
speed of sound.

In many applications, Mach number varies
throughout the flow, for instance, are-entering
space shuttle (Figure 1), where low-Mach
viscous boundary layers are embedded in
a hypersonic flow, and transonic flow over a
RAE2822 airfoil (Figure 2), where a supersonic
region with shockwave is presented within a
subsonic/transonic flow.

For such an application, Mach-uniform
algorithm is important which is a unified
numerical  formulation  for  fluid  flow
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Figure 1: Re-entering space shulttle.

Figure 2: Transonic flow over a RAE2822 airfoil.

computations at all speeds, i.e. arbitrary Mach
number regimes.

Historically, most of the existing techniques
are developed specifically for either
compressible fluid flow or incompressible fluid
flow regimes. These are beset by substantial
barriers when one applies a scheme of one
regime fo a problem of another regime.
Continual efforts have been carried out to
develop Mach-uniform methods by bridging
the gap between the two distinct methods,
namely density-based algorithm and pressure-
based algorithm, to enhance them to compute
fluid flows at arbitrary Mach number regimes.

The  density-based  algorithms  were
initially developed for high-Mach number
applications. The conservation of mass acts
as an equation for density whereas pressure
is computed from the energy equation and
equation of state. They are very effective
for high-Mach number fluid flow, but stability
and robustness significantly deteriorate when
solving low-Mach number fluid flow.
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Conventionally, they
are applied to low-Mach
number regime through
preconditioning (2). Inthe
more recent decades,
all-speeds versions of
Advection  Upstream
Splitting Method (AUSM)
have been proposed
(M. The all-speeds AUSM
and the variant AUSM-
family  schemes are
simple, accurate, robust and possess superior shock-capturing properties (3).
These methods do not involve sophisticated differentiations, such as Jacobian
matrix, in the evaluation of numerical fluxes and so, are readily extendible to
a general equation of state, to thermal non-equilibrium flows or to furbulence
model equations (4). Hence, all-speeds AUSM-family schemes are very
promising for the computation of fluid flows at arbitrary Mach number regimes.
Figure 3 shows an example of the application of AUSM-family schemes in the
computation of flow topology around a rocket,

Confrary to density-based algorithms, pressure-based algorithms were
originally proposed to solve incompressible fluid flow. The first pressure-based
algorithm proposed for all-speeds fluid flow was based on a semi-implicit
formulation that extended from Marker-And-Cell (MAC) method to Implicit-
Continuous-Fluid-Eulerian (ICE) method for solving transient fluid flow problems
at all-speeds (5).

Subsequently, some all-speed pressure-based algorithms have been
developed. The feasibility of pressure-based algorithm is based on the fact that
pressure variation remains finite, spanning arbitrary Mach number regimes.

All-speeds pressure-based algorithms generally suffer from numerical
instability in the computation of compressible flow due to the hyperbolic nature
of governing equations and the lack of the shock-capturing capability (6).

Recently, the pressure-based algorithm was combined with AUSM-family
schemes for fluid flows computations at arbitrary Mach numbers. The AUSM-
family schemes fit perfectly into the pressure-based algorithm due to the
separate treatment of convective and acoustic part (pressure) (7). The
advantages of the hybrid combination are that the shock-capturing properties
at high-Mach number regime are greatly improved, and ad hoc modifications
are not needed at low-Mach number regimes (8). This algorithm is successfully
extended to solve the magnetohydrodynamics at all-speeds (9), as shown in
Figure 4, and it is readily applied to various application of fluid flows at arbitrary
Mach number regimes, with complex flow topologies such as shock wave/
boundary layer interactions. B
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Figure 3: Computation of flow stream-line around a rocket.
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Figure 4: Magnetoplasmadynamic (MPD) thruster.
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