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FABRIKASI DAN PENCIRIAN TRANSISTOR KESAN MEDAN BENDALIR 

MIKRO DI ATAS SUBSTRAT SILIKON 

ABSTRAK

Pembinaan  transistor  kesan  medan  pengaliran  bendalir  mikro  berasaskan  silicon  telah 
dijalankan. Objektif utama kajian ini dijalankan adalah untuk mempersembahkan daripada konsep, 
rekabentuk transistor kesan medan pengaliran bendalir mikro dan menghasilkan aliran proses yang 
berkaitan dalam fabrikasi  transistor kesan medan bendalir  mikro di atas kepingan silicon,  yang 
akhirnya  akan diperincikan menggunakan ujian-ujian yang bersesuaian.  Maka,  fabrikasi  di  atas 
silikon  jenis  p-<100>  bersaiz  4  inci  melalui  proses  fotolitografi,  hakisan  secara  kimia, 
pengoksidaan termal, penyesaran dan pelogaman dengan focus khususnya ke atas laluan konduksi 
bendalir  telah dijalankan.  Tiga peringkat  topeng foto telah direkabentuk menggunakan perisian 
AUTO-CAD  dan  dicetak  krom  di  atas  kaca  jenis  soda-kapur.  Struktur  asas  peranti  ini  telah 
diadaptasi  daripada struktur MOSFET sedia ada dan telah diolah untuk menggabungkan laluan 
bendalir di dalam operasinya.  Oleh itu, tiada perubahan dari segi fungsi tetapi laluan konduksi 
utama diganti  dengan bendalir,  dan bukannya  semikonduktor  yang telah didopkan.  Dua tangki 
dihubungkan melalui satu laluan bendalir dengan setiap satu kawasan punca dan saliran yang telah 
didopkan  diletakkan  di  kedua-dua  bahagian  yang  bertentangan  dengan  laluan  bendalir  untuk 
mengurangkan konduksi terhadap substrat.  Kedua-duanya  diletakkan jauh antara satu sama lain 
bagi meminimakan pengaliran elektron melalui laluan bendalir bilamana aliran tersebut tidak diisi 
dengan cecair. Lebar aliran telah ditetapkan kepada lima saiz, iaitu 5 μm, 20 μm, 50 μm, 100 μm 
dan 500 μm untuk mengkaji  kesan ke atas pencirian transistor berbanding saiz aliran. Mobiliti 

xix
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elektron di  dalam laluan bendalir  terkesan dengan kehadiran cecair  polar.  Halaju elektron kini 
mengalami lebih banyak pelanggaran dengan molekul air yang bergerak dan polar, disertai dengan 
kesan medan elektrik yang dikenakan pada get. Profil laluan bendalir diperiksa dengan bantuan 
stilus profilometer dan SEM. Isu penutupan get di atas laluan bendalir diatasi dengan menggunakan 
satu  lapisan  kaca  nipis  yang  telah  disalut  dengan  aluminum pada  sebelah  permukaannya  dan 
dilekatkan ke atas permukaan silikon. Tetapi teknik tersebut akan meyebabkan lebih tinggi ambang 
voltan kerana tebal silika ialah 80 μm dan jauh lebih tebal berbanding oksida MOSFET yang biasa. 
Kebiasaannya  tebal  lapisan oksida MOSFET adalah di  sekitar  0.02 – 0.1 μm.  Justeru,  ia  akan 
menyebabkan pengurangan medan elektrik di sekitar kawasan get. Ujian ke atas peranti berlansung 
semasa  proses  fabrikasi,  di  mana  pelbagai  kerintangan,  ketebalan  lapisan  yang  dihasilkan  dan 
parameter-parameter lain diukur. Namun, ukuran-ukuran tersebut tidak dapat memberi pengertian 
atau  pemahaman  kepada  prestasi  akhir  peranti  tersebut.  Oleh  yang  demikian,  ujian  elektrikal 
dilaksanakan bagi kedua-dua kondisi iaitu dengan dan tanpa cecair di dalam laluan bendalir dengan 
menggunakan  alat  penganalisa  parametrik  semikonduktor,  penyurih  lengkung  dan  litar  berarus 
tinggi.  Pencirian  I-V  dan  kerintangan  peranti  dianalisa  dan  keputusan  menunjukkan  terdapat 
hubungan di antara arus dan voltan serta cirinya mematuhi teori. Namun demikian, peranti ini tidak 
dapat dikategorikan sebagai PMOS atau NMOS kerana laluan bendalir tidak didopkan. Keputusan 
menunjukkan rintangan berkurangan sebanyak satu tingkat bagi kondisi basah berbanding kondisi 
kering.  Ini  sekali  lagi  menunjukkan kehadiran molekul  air  di  dalam laluan bendalir  membantu 
memperbaiki mobiliti pengangkut.
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FABRICATION AND CHARACTERIZATION OF MICROFLUIDIC FIELD 

EFFECT TRANSISTOR ON SILICON SUBSTRATE

ABSTRACT

The development of a silicon-based microfluidic field effect transistor has been carried 
out. The main objective of this study is to present from concept, the design of a microfluidic FET  
and to develop its appropriate process flow in fabricating the microfluidic FET on silicon wafer,  
which will finally be characterized using a suitable test methodology. Hence, fabrication on a p-
<100>  4  inch  silicon  wafer  by  photolithography,  wet  chemical  etching,  thermal  oxidation,  
diffusion and metallization with focus on a liquid conduction path has been executed. A three level  
photo mask has been designed via AutoCAD and chrome printed on soda-lime glass. The basic  
structure of the device is adapted from the conventional MOSFET structure and redesigned to  
incorporate a liquid channel in its operation. Therefore, the functionality remains unchanged but  
the  principal  conduction  path  is  replaced  by  a  fluid  instead  of  a  doped  semiconductor.  Two 
reservoirs are connected via a channel with source and drain regions doped on opposite sides of  
the liquid channel to reduce conduction through the substrate. They are placed as far away from 
each other in order to minimize electron flow through the fluidic channel when not filled with fluid.  
The channel widths are set to five sizes, which are 5 μm, 20 μm, 50 μm, 100 μm and 500 μm in  
order to study the effect of the transistor characteristics against channel size. The electron mobility  
in  the  channel  is  significantly  affected due to  the  presence of  polar  liquid.  The electron drift  
velocity now undergoes more collisions with mobile water molecules, which is itself  polar and  
hence affected by the applied gate electric field. The channel profiles are inspected with the aid of  
stylus profilometer and SEM. The capping issue of the gate on the channel i.e. a void is addressed  
using  a  thin  layer  of  single-side  aluminum coated  glass  glued  onto  the  silicon  surface.  This  
however results in higher threshold voltage as the silica thickness is about 80 μm, which is much  
thicker than the normal MOSFET oxide. Typically the thickness of the oxide layer in MOSFET is in  
the range of 0.02 - 0.1μm. Therefore, this causes higher reduction in electric field at the gate area.  
Testing of the devices commences during the fabrication process where the various resistivity,  
grown layer thicknesses and other parameters are measured. However, these measurements do not  
give an insight towards the final device performance. Thus, an electrical test is performed on both  
conditions,  with  and  without  liquid  inside  the  channel  using  the  semiconductor  parametric  
analyzer, curve tracer and a high current circuit. I-V characteristics and resistivity of the devices  
is  analysed  and  the  results  show  that  there  is  some  current  and  voltage  relation  and  the  
characteristics does conform to the theory. However, the device can not be categorized either as  
PMOS or NMOS since the channel is undoped. The resistance is reduced by one order for wet  
condition as compared to dry condition. This again shows that the presence of water molecules in  
the channel improves the carrier mobility. 

xxi
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Introduction 

 The semiconductor industry has grown rapidly in the past few decades, driven 

by the microelectronics revolution. New technologies emerge with new materials and 

manufacturing processes that are used to create new products. Microelectronic 

processing has also fuelled integrated microfluidic systems which have gained interest 

in recent years for many applications including chemical, medical, automotive and 

industrial (Gad-el-Hak, 2006, p. 3-1). This chapter provides the background 

knowledge on which the studies are based. 

 

1.2 Microfluidics and microfluidic devices 

Microfluidics is a multidisciplinary field comprising of physics, chemistry, 

engineering and biotechnology which deals with the behavior, precise control and 

manipulation of microliter and nanoliter volumes of fluids. It has been an area of 

intense research, where the key aspect of microfluidics is its smallness. This attribute 

brings new elements which are not only quantitative, but also qualitative (Ottino & 

Wiggins, 2004; Karnik, Castelino & Majumdar, 2006). 

  The volumes involved in microfluidics can be understood by visualizing the size 

of a one-litre container, and then imagining cubical fractions of this container. A cube 

measuring 100 mm on an edge has a volume of one litre. A tiny cube whose height, 

width and depth are 1/1000 (0.001) of this size or 0.1 mm is the size of a small grain of 

table sugar. That cube will occupy 1.0 nl. A volume of 1.0 pl is represented by a cube 
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whose height, width and depth are 1/10 (0.1) of the 1.0 nl cube. It would thus take a 

powerful microscope to resolve this size. 

Microfluidic devices on the other hand, are devices where micron sized fluid 

channels fabricated on a suitable substrate to achieve a specific end application. 

Channels of the micro-devices are mostly silicon, glass, or quartz based and is 

fabricated by photolithography, etching, deposition, microwetting, and 

microimpression which permit the fabrication of miniaturized systems. Interconnection 

of channels allows the realization of networks along which liquids can be transported 

from one location to another on a device surface. In this way, small volumes of solution 

may be introduced from one channel into another, and controlled interaction of 

reactants is made possible (Verpoorte & Rooij, 2003). Other than channels, nozzles, 

pumps, mixers, valves, filter, sensors are also categorized as microfluidic devices 

(Permal, 2007). Typically these devices are either static or increasingly dynamic where 

the liquid flows through the channels and bends. The small size of the channels 

combined with capillary effects, pump effects (if any pump is used) and bend effects 

enable separation and subsequent identification of minute quantities of elements. The 

ability to manipulate fluids at the micron level brings in several advantages (Marr & 

Murakata, 2007): 

1. A significant reduction of sample consumption.  

2. A larger number of devices consisting of hundreds to thousands of channels and 

valves can be incorporated on a small planar surface allowing simultaneous 

parallel and complex analyses.  

3. Smaller processing time for analyses and synthesis that can be done at the point 

of need than at a centralized laboratory (bringing laboratory to the sample).  

4. The fabrication methods are based on traditional silicon-based technologies 
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which make them easier and cheaper to produce.  

Fabrication of microfluidic devices presents new challenges for micro- and 

nano-engineering. With increasing demand for products associated with the medical, 

pharmaceutical, and analytical science industries over the past few years, much 

attention has been paid to the design and manufacture of microfluidic devices. Intensive 

research has been made especially on silicon-based microfluidic devices (Jackson, 

2006). Silicon has become the material of choice for most microfluidic applications 

because of the well-explored microfabrication techniques of silicon itself. It makes the 

combination of the mechanical and electrical function in single devices possible 

(Verpoorte & Rooij, 2003) providing the impetus in the area of MEMS for the 

enormous activity over the past three decades. 

Since the establishment of the field of µTAS in 1990 by Manz, Graber and 

Widmer, device design and process integration remains as an interesting challenge to 

be solved (Manz, Graber &Widmer, 1990). In this study, the focus is directed towards 

the fabrication technology and its related characterization which allows the realization 

of a silicon-based microfluidic field effect transistor.  

 

1.3 Survey of past experimental work 

From as early as 1960s, fluidic systems have been experimented with, to 

perform logic operations. Erickson and Li (2003) reported that modern microfluidics 

(Gravesen, Branebjerg & Jensen, 1993) can be traced back to the development of a 

silicon chip based gas chromatograph at Stanford University and the ink-jet printer at 

IBM. Though both these devices were quite remarkable, the concept of the integrated 

microfluidic device (which often fall under the broad categories of labs-on-a-chip or 

miniaturized total analysis systems) as it is known today was not developed until the 
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