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Abstract – There exists so many disturbance torques in space which may deviate the satellite from the desired attitude. To 

overcome the effects of the disturbance torques some stabilization has to be provided to the satellite. This paper describes the 

development of a nano-satellite Attitude Control System (ACS) which uses Adaptive Neuro-Controller (ANC) based on 

Hybrid Multi Layered Perceptron (HMLP) network. The objective of this paper is to analyze the time response of ANC in 

order to improve the efficiency of the three-axes attitude stabilization. The nano-satellite plant that was used in this simulation 

is called Innovative Satellite (InnoSAT). The performance of ANC controller was compared with Adaptive Parametric Black 

Box (APBB). Both controllers used Model Reference Adaptive Control (MRAC) as a control scheme and Weighted Recursive 

Least Square (WRLS) as an adjustment algorithm. The function of this algorithm is to adjust the controller parameters to 

minimize the error between the plant’s output and the model reference’s output. The simulation results indicated that ANC 

controller has significant improvement over APBB controller for varying operating conditions such as varying gain, noise and 

disturbance torques.  

 

 

1. Introduction 

Innovative Satellite (InnoSAT) is a nano class satellite, 

consists of the CubeSAT kit structure measuring 30cm x 10cm 

x 10cm, and a Texas Instrument MSP430 microcontroller with 

Salvo real-time operating system as the on board computer. 

The electrical power system of InnoSAT is capable of 

generating an average of 5W. InnoSAT uses UHF and VHF 

based communications system, and a three-axes based attitude 

determination and control system. Figure 1 shows the external 

view of InnoSAT. [1] 

This paper describes the development of a nano-satellite 

Attitude Control System (ACS) for InnoSAT plant. ACS is the 

main sub-system in satellite development. The requirements 

of ACS are decided by the payload of the satellite as given in 

[2] [3]. The ACS controls the body orientation (attitude) of the 

satellite with respect to a reference frame. The ACS stabilizes 

the satellite after deployment and maintains a stabilized 

nominal attitude to conserve power. The ACS consists of 

attitude controllers that generate the control commands which 

drive the actuators to stabilize and / or change the satellite’s 

attitude [4]. The attitude control algorithm resides in the ACS 

microprocessor and communicates to the on-board computer 

subsystem. The on-board computer processes the data through 

a control algorithm which is specially designed for the 

particular mission [5].  

 
Figure 1. Standard CubeSAT Kit 

 

The ACS operates exclusively as a three-axes attitude 

stabilized control system. Three-axes attitude stabilization is a 

type of stabilization in which a satellite maintains a fixed 

attitude relative to its orbital track. With a three-axes 

stabilization satellite, the solar panels can be kept facing the 

Sun and a directional antenna can be kept pointed at the Earth 

without having to be de-spun [6]. There are a few three-axes 

attitude controls using different method describes in [7] [8] 

[9]. 

A development of an intelligent real time control system 

based on neural network is possible for a satellite that is 

exposed to non-probabilistic uncertainties such as sun flare 
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and noises [10]. For satellite attitude control system, a few 

approaches by using neural network have been developed [11] 

[12] [13]. 

A few performance comparisons have been done between 

adaptive neuro-controller based on HMLP network and other 

controllers. The result shows that ANC based on HMLP 

network gives significant improvement in the performance of 

controlling unstable system [14] [15]. The comparison is 

based on a double integrator and a nonlinear plant. In this 

research, the advantages of HMLP network combined with 

WRLS algorithm have been found to improve the efficiency of 

the three-axes attitude stabilization and time response. 

 

2. Model of Satellite 

Developing a mathematical model of the plant which 

adequately represents the real environment is very important 

and not an easy task. If the model is not adequate, the 

subsequent steps of analysis, prediction, controller, synthesis 

and so on, cannot be successful. Model should provide 

information at the most relevant level of precision, 

suppressing unnecessary details when appropriate. The model 

is neither too simple as it might gives an improper 

representation for the characteristics of the system nor too 

complex as it will be difficult to implement in real practical 

situation [16].  

For InnoSAT model, there are a double integrator for Roll 

(X), Pitch (Y) and Yaw (Z) axes which having two poles at the 

origin of s-plane. This model is considered to present the 

tumbling behavior of a satellite in space after deployment and 

used to study the performance aspects of satellite behavior 

under various operating conditions. Since this model is 

dealing with second-order systems, some damping control 

must also be provided to improve stability. This means that the 

control torques will have to include a term that is dependent on 

the attitude rates to be measured or estimated.  
The control torques to be activated is always a function of 

the attitude errors. The simplest torque control law is based on 
Euler angle errors. For a satellite with a diagonal inertia matrix 
and small Euler angle rotations, the attitude dynamic equations 
can be approximated as [2]: 

              ̈

               ̈

            ̈

}         (1) 

The Euler angles  ,   and    are defined as the rotational 
angles about the satellite body axes:  , about the X axis;  , 
about the Y axis; and  , about the Z axis. The term    
represents the orbital angular velocity of the satellite.     , are 
control moments to be used for controlling the attitude motion 
of the satellite; and     , are those moments due to different 
disturbing environmental phenomena. These are second order 
linear differential equations of the Eulers angles. The Laplace 
Transform of the Roll, Pitch and Yaw axes from (1) are given 
by: 
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The Euler angles and their derivatives with subscript 0 

represent the initial conditions of the satellite attitude about its 

equilibrium position. For InnoSAT, the initial angles for all 

axes ( ( )  ( )  ( ))  are assumed to be zero. Consequently, 

the transfer function of InnoSAT model for Roll, Pitch and 

Yaw axes equation are simplified as equation (3): 
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3. Methodology 

In this research, Model Reference Adaptive Control 

(MRAC) was chosen to be the controller scheme for ANC and 

APBB controllers. Hybrid Multi Layered Perceptron (HMLP) 

network has been selected as the basis for the ANC controller. 

Meanwhile, a Weighted Recursive Least Square (WRLS) 

algorithm is used as an adjustment mechanism to adjust the 

controller parameters.  

3.1. Model Reference Adaptive Control 

Mashor [17] proposed the MRAC scheme as shown in 

Figure 2. In this MRAC, a reference model is chosen to 

generate the desired output trajectory and to ensure the output 

of the controlled system tracking the desired reference output. 

In order to achieve the desired system performance in the 

sense of the closed-loop stability, adaptive laws were used to 

update the controller parameter. 

 
Figure 2. Block diagram of a model reference adaptive control 

 

A stable linear continuous-time reference model is 

specified by the following differential equation: 

 

  ( )     
  (   )     

  (   )       
 (   )  

    
 (   )    (4) 

where  ( )  is the reference input and   ( ) is the reference 

model output;         are fixed model parameters and their 

values are chosen for any desired stable response. The model 

following error is defined by: 

 ( )    ( )    ( )  (5) 

where   ( ) is the output plant.  

3.2. Hybrid Multi Layered Perceptron Network 

Cybenko[18] and Funahashi [19] proved that the Multi 

Layered Perceptron (MLP) network with one hidden layer is 

sufficiently complete to approximate any continuous function 
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with reasonable accuracy. However, the training process of 

MLP takes a large computation time and often leads to local 

minima problem. To solve this problem, MLP network with 

linear connection, called the Hybrid Multi Layered Perceptron 

(HMLP) network was introduced which was proved to have 

better performance than the conventional MLP network [20]. 

HMLP network with one hidden layer is shown in Figure 3 

[21]. The network learns the relationship between pairs of 

inputs (factors) and output (responses) vectors by altering the 

weight and bias values. The HMLP network is built as an 

optimum network of modeling both linear and nonlinear 

systems. It can be seen that the HMLP network allows the 

network input to be connected directly to the output nodes 

with some weighted connections to form a linear system 

(dotted line connection). This additional linear system is 

parallel with the original nonlinear system from the standard 

MLP model (continuous line connection).  

 
Figure 3. One_hidden_layer HMLP network 

 

The output of the kth node in the output layer,  ̂  can be 

expressed as: 
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where    
     

  and    
  denote the weights in the first layer, 

weights in the second layer and weights of extra linear 

connections between the input and output layer, respectively; 

  
  and   

  denote the thresholds in the hidden nodes and inputs 

that are supplied to the input layer respectively. The number of 

output nodes, inputs nodes and hidden nodes are represented 

by      and    respectively.  ( )  is an activation function 

that is normally selected as a sigmoid function: 

The weight    
     

  and    
  and threshold,   

  are 

unknowns and should be selected to minimize the prediction 

error, define as: 

  ( )     ( )   ̂ ( )  (8) 

where   ( )  and  ̂ ( )  are the actual (or targeted) and the 

network (or predicted) output, respectively. 

3.3. Adjustment Mechanism 

The structure of controller shown in Figure 1 has linear 

parameters; hence any on-line estimation algorithm can be 

used to estimate the controller parameters. In this research, a 

Weighted Recursive Least Square (WRLS) have been used as 

a mechanism to adjust the parameters in a model reference 

adaptive control. WRLS algorithm is used as an estimation 

algorithm that will adjust the controller parameters to 

minimize the error between the plant output and the model 

reference output. 

For all        given  ̂(  ) and set  ( )      , the WRLS 

estimate  ̂(  ) using the following recursive equations [17]: 

 ̂( )   ̂(   )   ( )[ ( )     ̂(   )]          (9) 

 ( )   (   ) ( )        (   ) ( )          (10) 

 ( )      ( )  ( )   (   )                          (11) 

Modified the equation (9) according to: 

 ̂( )   ̂(   )   ( ) (   )                     (12)                                           

where    is a difference between plant output and reference 

input and  ( ) is the information vector that consists of the 

controller inputs.  ̂( ) is the vector of controller parameters, 

P(t) is covariant matrix and λ(t) is forgetting factor. Other 

symbols are defined and assigned according to the standard 

WRLS algorithm [22]. 

3.4.  Adaptive Parametric Black Box 

Mashor [17] proposed a simple approach to parametric 

adaptive controller which is very similar to the control scheme 

of black box AI controller. The scheme offers a simple design 

approach of black box controller with simple structure of the 

parametric controller. The controller structure is an ARMAX 

model of a suitable order. However, a low order controller is 

preferable for fast updating of parameters. A second order 

controller structure is given below: 

 ( )        (   )     (   )     ( )  
   (   )     (   ) (13) 

where   s are the controller parameters that need to be 

adjusted to minimize the cost function. 

 

4. Result and Discussions 

In this section, simulation results of InnoSAT plant are 

presented. The simulation results were produced for the 

controllers based on some operating conditions such as 

varying gain, noise and disturbance torques. The InnoSAT 

characteristics and initial conditions are shown in Table 1. 

 
 Table 1. InnoSAT Characteristics and Initial Conditions 

Moment of inertia    0.0327 kg-m2 

Moment of inertia    0.0498 kg-m2 

Moment of inertia    0.0330 kg-m2 

Orbital rate    0.01095 rad/s 

Initial angular velocity  ̇  5 deg 

Initial angular velocity  ̇  5 deg 

Initial angular velocity  ̇  5 deg 

Disturbance     5x10-6 N-m 

Disturbance     5x10-6 N-m 

Disturbance     5x10-6 N-m 

 

After substituting the parameter value of InnoSAT, the 

transfer functions in (3) for Roll, Pitch and Yaw axes are 

become: 
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For the simulation, the InnoSAT plants can be described 

by a difference equation of the discrete form as: 

 ( )       (   )   (   )     ( )          

(   (   )     (   ))        (   (   )  

   (   ))      (15) 

 ( )        (   )   (   )    ( )        

(   (   )     (   ))           (   (   )  

   (   ))  (16) 

 

 ( )           (   )   (   )     ( )       

(   (   )     (   ))       (   (   )  

   (   ))  (17) 

where   ( )  is a varying gain,     ( )  are the controller 

output and     ( )  are the constant disturbance torque. 

Meanwhile  ( )  ( ) and  ( ) are the outputs from InnoSAT 

plant for Roll, Pitch and Yaw axes.  
The input reference for this simulation is a square wave 

and step input. Model reference was selected as: 

  ( )    (   )        (   )       (   ) (18) 

where r(t) is a square wave reference input signal. Parameter 

                 and         have been chosen 

such that a desired trajectory,   ( ) is obtained for the plant 

output,   ( ) to follow.  
 
 

Table 2: Performance comparison between ANC and APBB controllers 

 ANC APBB 

System characteristic / Axis X Y Z X Y Z 

Rise Time (s) 5.26 6.94 6.08 5.11 3.96 5.15 

Settling Time (s) 33.01 37.48 41.63 146.65 Not settle 146.11 

Percentage Overshoot (%) 8.37 12.03 5.26 129.83 164.44 129.34 

 

 

The step response of the system between ANC and APBB 

controllers are shown in Figure 4. From the figure, the 

performance comparisons between the ANC and APBB 

controllers for all axes were computed and are as presented in 

Table 2. It can be observed that the performances of ANC for 

all axes are significantly better than the APBB controller in 

terms of settling time and percentage of overshoot. In terms of 

rise time, APBB controller shows good performance 

compared to ANC. However, output response of APBB 

controller has a long settling time and percentage of overshoot 

is more than 100%. For Pitch axis, output response of APBB 

controller is worst where it cannot converge at the end of time. 

Figure 5 shows the square wave output response of both 

controllers with unity gain. The figure illustrates that ANC 

controller produced better result than APBB controller for all 

axes. 

 
Figure 4. Step response of ANC and APBB controllers for unity gain 

 

 
Figure 5. Comparison results with unity gain 
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Figure 6. Comparison results with varying gain 

 

As illustrate in Figure 6, the output response of ANC and 

APBB controllers with varying gain asymptotically follows 

the model reference output at the high gain. However, the 

output response of ANC slightly degrades with small 

oscillations at the low gain while output response for APBB 

controller is even worst for all axes. 

 
Figure 7. Comparison results with measurement noise 

 

Figure 7 shows the system is subjected to measurement 

noise. The output response of ANC and APBB controllers can 

follow the reference model response very well despite of the 

significant noise but overshoot of APBB controllers for every 

cycle is quite high. 

 
Figure 8. Comparison results with step disturbance 

 

Figure 8 shows the output response for both controllers 

when the step disturbance with strength of 5% was introduced 

between 300s and 600s. From the figure, it can be observed 

that both controllers can handle the disturbance very well and 

can converge after certain time. However, the output response 

of APBB controller has high overshoot after the disturbance 

occur compared to ANC. From the output response, it is clear 

that performance of ANC is significantly better than APBB 

controller for all axes when dealing with disturbance. 

 

5. Conclusions 

An adaptive neuro-controller based on hybrid multi 

layered perceptron network for the Innovative Satellite plant 

has been presented. Its performance was compared to a 

adaptive parametric black box to control three-axes of 

InnoSAT attitude. The comparison is based on the time 

response performance and the capability of the controllers to 

track the model reference output. The results show that ANC 

provides significantly faster settling time with reduced 

overshoot and has improved the efficiency of the attitude 

stabilization. Based on the simulation results and performance 

analysis for both controllers, it can be concluded that the ANC 

based on HMLP network is sufficient to control the plants with 

unpredictable conditions such as varying gain, measurement 

noise and disturbance torque. It is also observed that ANC 

based on HMLP network is controllable and more stable than 

APBB controller. 
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