• Login
    View Item 
    •   DSpace Home
    • Theses & Dissertations
    • Institute of Engineering Mathematics (IMK) (Theses)
    • View Item
    •   DSpace Home
    • Theses & Dissertations
    • Institute of Engineering Mathematics (IMK) (Theses)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Boundary layer flow and heat transfer of a nanofluid over a stretching/ shrinking sheet with suction and slip effect

    Thumbnail
    View/Open
    Access is limited to UniMAP community. (671.7Kb)
    This item is protected by original copyright. (2.217Mb)
    Declaration Form (250.6Kb)
    Author
    Nur Athirah, Azami
    Metadata
    Show full item record
    Abstract
    In this thesis, the problem of steady boundary layer flow and heat transfer over a stretching/shrinking surface with the velocity slip boundary condition and suction is considered. The fluid that considered in this study, namely the nanofluid. The study starts with the formulations of the mathematical models that governed the fluid flow and heat transfer. Next, the governing nonlinear equations in the form of partial differential equations are reduced into ordinary differential equations using an appropriate similarity transformation. The resulting system of ordinary differential equations is then solved numerically using a shooting method by means of the built-in programmme in the MAPLE 12 software. The numerical values of the skin friction coefficient, the local Nusselt number which represents the heat transfer rate at the surface and the local Sherwood as well as the velocity, temperature and nanoparticles volume fraction profiles, are obtained for the governing parameter namely slip effect parameter with the fixed values of suction parameter, stretching/shrinking parameter, the Brownian motion parameter, thermophoresis parameter, Lewis number and Prandtl number. The numerical results obtained are presented in the form of tables and graphs. The comparisons of results with previous studies are made to validate the results obtained. It is found the flow and heat transfer characteristics are influenced by slip effect parameter. The skin friction coefficient and the local Nusselt number decrease whereas the local Sherwood number increases with the increasing of slip effect parameter. The dual solutions are obtained for a certain range of the parameters involved.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/77205
    Collections
    • Institute of Engineering Mathematics (IMK) (Theses) [28]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback