DESIGN A WIDEBAND LOW-NOISE AMPLIFIER FOR WIRELESS COMMUNICATION USING 0.35-\(\mu\)m CMOS TECHNOLOGY

By

MOHD HAFIZ BIN ABU

Report submitted in partial fulfillment
Of the requirements for the degree
Of Bachelor of Engineering (Electronic)

MARCH 2007
ACKNOWLEDGEMENTS

By the name of Allah, The Most Merciful. All praises due to Him, Lord of all worlds.

First of all I would like to thank to everybody who has stand on my back and aided me direct and indirectly throughout the completion of my Final Year Project and this Final Report. Special thanks goes to everyone from the school of Microelectronic especially Electronic Engineering course, University Malaysia of Perlis (UniMAP) for their effort in making event rather smoother.

After 2-semester period of thick and thin, I have managed to come out with the result of my study, as well as this final report. It was not easy as it may thought, since I have to conduct numerous studies regarding this material on my own, as it is very complicated for me.

Therefore, it would have been impossible for me to complete this study, if it wasn’t for my great supervisor, Pn. Siti Zarina Md. Naziri, whose dedication and commitment had been a very big support the start of this journey.

I also love to express my appreciation to all technician at I.C Design lab for all support and help that I need during my final project. Secondly my friend, Mr. Jaynold Akom that teach me a lot to understand my project. Lastly to all my fellow friends and my family for their support throughout the completion of this project.

APPROVAL AND DECLARATION SHEET
This project report titled Design A Wideband Low Noise Amplifier for Wireless Communication Using 0.35-um CMOS Technology was prepared and submitted by Mohd. Hafiz Bin Abu (Matrix Number: 031030257) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Electronic Engineering) in Universiti Malaysia Perlis (UniMAP).

Checked and Approved by

(SITI ZARINA MD. NAZIRI)
Project Supervisor

School of Microelectronic Engineering
Universiti Malaysia Perlis

March 2007

MERKABENTUK PENGUAT RENDAH HINGAR JALUR LEBAR UNTUK KEGUNAAN WAYARLES MENGGUNAKAN TEKNOLOGI CMOS 0.35-um.
DESIGN A WIDEBAND LOW-NOISE AMPLIFIER FOR WIRELESS COMMUNICATION USING 0.35-µm CMOS TECHNOLOGY

ABSTRACT

Low Noise Amplifier (LNA) is one of the receiver front end component. Place near antenna, this part used to minimize the noise figure of the amplifier while providing enough gain with sufficient linearity to overcome the noise of subsequent stage. It is commonly used to amplify signal that are too weak for direct processing for example in radio and cable receiver. For this project, some specification to design Low Noise Amplifier are picked from Digital Enhanced Cordless Telecommunication (DECT) specification. During designing the amplifier, the characteristic of the low-noise amplifier has been studied. Thus, the core amplifier of the low noise amplifier consist of simple common source transconductance structure for the first stage and the second stage used common source amplifier with active shunt-shunt feedback. The advantage by using the feedback structure is the amplifier reduce effect of noise that occur and reduce non-linear distortion as the output proportional with the input. The design of the Low Noise Amplifier used Mentor Graphic software by using 0.35tsmc (Taiwan Semiconductor Manufacturing Company) for design and simulation process. At the end of the process, layout of the Low Noise Amplifier has been produce and ready to be fabricated at clean room.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>i</td>
</tr>
<tr>
<td>APPROVAL AND DECLARATION SHEET</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction to Wideband Low Noise Amplifier | 1 |
1.1.1 Project Specification | 2 |
1.2 Digital Enhanced Cordless Telecommunication (DECT) | 3 |
1.3 Problem Statement | 4 |
1.4 Chapter Organization | 5 |

CHAPTER 2 LITERATURE REVIEW

2.1 History of Wireless and Application | 7 |
2.2 Noise | 7 |
2.2.1 Noise Sources | 8 |
2.2.1.1 Thermal Noise | 8 |
2.2.1.2 Shot Noise | 9 |
2.2.1.3 Flicker Noise | 10 |
2.2.2 Noise Figure | 10 |
2.3 Filter
 2.3.1 Types of Filter 12
2.4 Analog Circuit Design Topology 13
 2.4.1 Introduction to Circuit Design 14
2.5 Metal-oxide-Semiconductor (MOS) Transistor Theory 17
 2.5.1 Layout Design Rules 19

CHAPTER 3 METHODOLOGY
3.1 General Utilizing of Mentor Graphic 20
 3.1.1 Schematic 21
 3.1.2 Layout 21
 3.1.3 DRC (Design Rules Check) 21
 3.1.4 LVS (Layout Versus Schematic) 22
3.2 Process Flow 23
3.3 Circuit Overview 26
3.4 Circuit Specification 27
 3.4.1 Determine size of transistor M1 29
 3.4.2 Determine size of transistor M2 30
 3.4.3 Determine size of transistor M3 32
 3.4.4 Determine size of transistor M4 36

CHAPTER 4 RESULTS AND DISCUSSION
4.1 Discussion 37
4.2 Result 39
 4.2.1 Schematic Result 39
 4.2.2 Layout Result 41
 4.2.3 Design Schematic Layout (DRC) Result 41
 4.2.4 Layout Versus Schematic (LVS) Result 42
 4.2.5 Layout 43
CHAPTER 5 CONCLUSION

5.1 Summary
5.1.1 Summary of the result
5.2 Recommendation

REFERENCES

APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Low Noise Amplifier (LNA) and others receiver component</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Wideband low noise amplifier circuit</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Basic filter responses</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Trade off while designing analog circuit</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>The a circuit of core amplifier with loading</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>The f circuit of core amplifier with loading</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Transistor nMOS and pMOS</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Process Flow of Mentor Graphic Software</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart at the schematic phase</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Flow chart for layout process</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Circuit of Wideband Low Noise Amplifier</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Trade Off pattern in analog design</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Calibre –DRC RVE window</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Layout meet the schematic and verification in LVS</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>The layout design of Low Noise Amplifier</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Specification of DECT</td>
<td>2</td>
</tr>
<tr>
<td>3.1</td>
<td>Specification of LNA circuit</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Result for amplifier core</td>
<td>39</td>
</tr>
<tr>
<td>5.1</td>
<td>Value achieve after experiment done</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

IC Integrated Circuit
VLSI Very Large Scale Integration
µ Mobility of charge
L Effective channel length

\(\left(\frac{W}{L} \right) \) Aspect ratio

\(V_{TH} \) Voltage threshold

\(C_{ox} \) Total capacitance per unit length

\(g_m \) Transconductance

\(\psi_o \) Junction built in potential

\(V_{db} \) Reverse voltage across the junction

NF Noise Factor