DESIGN, FABRICATION AND CHARACTERIZATION OF CMOS ISFET FOR pH MEASUREMENTS

CHIN SENG FATT

UNIVERSITI MALAYSIA PERLIS
2009
DESIGN, FABRICATION AND
CHARACTERIZATION OF CMOS ISFET
FOR pH MEASUREMENTS

by

Chin Seng Fatt
(0630110086)

A thesis submitted
in fulfillment of the requirements for the degree of
Master of Science (Microelectronic Engineering)

School of Microelectronic Engineering
UNIVERSITI MALAYSIA PERLIS

2009
UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS

Author's full name : CHIN SENG FATT
Date of birth : 28 MAY 1982
Title : DESIGN, FABRICATION AND CHARACTERIZATION OF CMOS ISFET FOR pH MEASUREMENTS
Academic Session : 2009/2010

I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*
☐ OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)

I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of ____ years, if so requested above).

Certified by:

_________________________ _______________________________
SIGNATURE SIGNATURE OF SUPERVISOR

820528-14-5085 PROFESSOR DR. UDA BIN HASHIM
__________________________ ________________________________
(NEW IC NO. / PASSPORT NO.) NAME OF SUPERVISOR

Date: _______________ Date: ________________

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.
APPROVAL AND DECLARATION SHEET

This thesis titled Design, Fabrication and Characterization of CMOS ISFET for pH Measurements was prepared and submitted by Chin Seng Fatt (Matrix Number: 0630110086) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the award of degree of Master of Science (Microelectronic Engineering) in University Malaysia Perlis (UniMAP). The members of the Supervisory committee are as follows:

PROFESSOR DR. UDA BIN HASHIM
Director
Institute of Nano Electronic Engineering
University Malaysia Perlis
(Head Supervisor)

MOHD KHAIRUDDIN BIN MD ARSHAD
Lecturer
School of Microelectronic Engineering
University Malaysia Perlis
(Co-Supervisor)

Check and Approved by

--
(PROFESSOR DR. UDA BIN HASHIM)
Director / Head Supervisor
Institute of Nano Electronic Engineering
Universiti Malaysia Perlis

(Date:)

School of Microelectronic Engineering
Universiti Malaysia Perlis

2009
Acknowledgements

I would like to thank University of Malaysia Perlis (UniMAP) and specifically School of Microelectronic Engineering for providing me with exceptional 2 years of trials and tribulations. Most of all, the excellent facilities are truly appreciated.

I wish to express sincere gratitude to project advisor, Professor Dr. Uda Hashim through whom that I have learned a lot and for his unfailing patience and guidance with regards to this project. I am also extremely thankful to Mr Mohd Khairuddin Md Arshad for giving a lot of advice and encouragements for my academic and research efforts.

It would have been impossible for me to complete my project without the help of the late Mr Phang Keng Chew and his wife, Ms. Nur Hamidah bt. Abdul Halim, Mr Hafiz b. Abd Razak, Mr Bahari Man, Mr Mohd Sallehadin Saad and Pn Sheila who have continuously aided in the successful completion of this project.

There are too many people to mention individually but some names stand out. I want to extend special thanks to doctoral candidates Pak Wahyu Hidayat and Pak Sutikno Md Nasri for their help and numerous suggestions at many occasions and being such good friends. Pak Wahyu and Pak Sutikno have always maintained a ready willingness to listen and help out in both personal and administrative affairs.
I thank my fellow colleagues of seniors and juniors at the Institute of Nano Electronic Engineering (INEE) and at the School of Microelectronic Engineering for sharing their time, expertise and humour with me. They are particularly Cikgu Kassim, Muzri, Emi, Shahrir, Azizul, Ikhwan, Maizatul, Naim, Syuhada, Ema, Rosyhide, Siti Fatimah and Foo Kai Loong.

The financial support provided by the Ministry of Science, Technology and Innovation (MOSTI) and Government of Malaysia during 2007-2008 is hereby also acknowledged.

Last but not least, a very big thank you to my beloved family for their support, love and constant encouragement the have bestowed upon me. Without their support, I would never have gotten so far.
Table of Contents

Declaration of Thesis i
Approval and Declaration Sheet ii
Acknowledgements iii
Table of Contents v
List of Tables xi
List of Figures xii
List of Abbreviations xv
List of Symbols xviii
List of Appendices xix
List of Publications xx
List of Awards xxii
Abstrak xxiii
Abstract xxiv

Chapter 1 Introduction 1
1.1 Background of Research 1
1.2 Problem Statements 5
1.3 Research Objectives 7
1.4 Research Scopes 8
1.5 Thesis Overview 9

© This item is protected by original copyright
Chapter 2 Literature Review

2.1 Introduction

2.2 Ion Sensitive Field Effect Transistor (ISFET)
 2.2.1 Basic Structure of an ISFET
 2.2.2 The Operational Principle of the ISFET

2.3 Development of ISFET
 2.3.1 Gate Materials
 2.3.2 Encapsulation
 2.3.3 Reference Electrode

2.4 Fabrication Technologies of ISFET
 2.4.1 Standard CMOS Fabrication
 2.4.2 Custom CMOS Fabrication

2.5 ISFET Simulation Model

2.6 Applications of ISFET
 2.6.1 Ionic Measurements
 2.6.2 Environmental Monitoring
 2.6.3 Agriculture Field
 2.6.4 Biomedical Field
 2.6.5 Others and Future Applications

2.7 Chapter Summary

Chapter 3 Process and Device Simulations of ISFET

3.1 Introduction

3.2 Technology Computer Aided Design (TCAD)
 3.2.1 Overview of Synopsys Taurus TCAD
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Taurus TSUPREM4</td>
<td>43</td>
</tr>
<tr>
<td>3.2.2 Taurus MEDICI</td>
<td>43</td>
</tr>
<tr>
<td>3.3 ISFET Model in TCAD</td>
<td>44</td>
</tr>
<tr>
<td>3.4 Process Simulation of ISFET by Taurus TSUPREM4</td>
<td>45</td>
</tr>
<tr>
<td>3.4.1 Initial Structure Generation</td>
<td>46</td>
</tr>
<tr>
<td>3.4.2 Field Oxide Growth Simulation</td>
<td>47</td>
</tr>
<tr>
<td>3.4.3 Source and Drain Region Simulation</td>
<td>48</td>
</tr>
<tr>
<td>3.4.4 Gate Region Simulation</td>
<td>51</td>
</tr>
<tr>
<td>3.4.5 Silicon Nitride Deposition Simulation</td>
<td>53</td>
</tr>
<tr>
<td>3.4.6 Contact Region and Metallization Simulation</td>
<td>53</td>
</tr>
<tr>
<td>3.4.7 Formation of the Complete ISFET</td>
<td>54</td>
</tr>
<tr>
<td>3.5 Device Simulation of ISFET by Taurus Medici</td>
<td>55</td>
</tr>
<tr>
<td>3.5.1 Simulation of Gate Characteristics</td>
<td>56</td>
</tr>
<tr>
<td>3.5.2 Simulation of Drain Characteristics</td>
<td>57</td>
</tr>
<tr>
<td>3.6 Chapter Summary</td>
<td>58</td>
</tr>
<tr>
<td>Chapter 4 CMOS ISFET Mask Design and Layout</td>
<td>59</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.2 ISFET Layout</td>
<td>60</td>
</tr>
<tr>
<td>4.3 Mask Fabrication Methodology</td>
<td>62</td>
</tr>
<tr>
<td>4.3.1 Mask Material</td>
<td>62</td>
</tr>
<tr>
<td>4.3.2 Mask Fabrication Set-Up</td>
<td>63</td>
</tr>
<tr>
<td>4.4 Results</td>
<td>64</td>
</tr>
<tr>
<td>4.4.1 N-Well Mask</td>
<td>64</td>
</tr>
<tr>
<td>4.4.2 Source Drain Masks</td>
<td>66</td>
</tr>
</tbody>
</table>
4.4.3 Gate Mask 67
4.4.4 Contact Mask 68
4.4.5 Metal Mask 68
4.5 Discussion 69
4.6 Chapter Summary 70

Chapter 5 ISFET Fabrication using CMOS Process 71

5.1 Introduction 71

5.2 CMOS Process Modules for ISFET Fabrication 71
 5.2.1 Thermal Oxidations Modules 71
 5.2.2 Photolithography Module 74
 5.2.3 Wet Etch Module 78
 5.2.4 Thermal Diffusions Modules 80
 5.2.5 Thin Films Depositions Modules 80

5.3 CMOS ISFET Fabrication Details 83
 5.3.1 Starting Material 83
 5.3.2 Field Oxidation 84
 5.3.3 N-Well Photolithography 86
 5.3.4 N-Well Phosphorus Diffusion 88
 5.3.5 N-ISFET Phosphorus Source Drain Formation 90
 5.3.6 P-ISFET Boron Source Drain Formation 92
 5.3.7 Gate Oxidation 93
 5.3.8 Silicon Nitride Deposition 95
 5.3.9 Nitride and Oxide Contact Via Etch 97
 5.3.10 Metallization 99
Chapter 6 Functional Testing and Characterization of CMOS ISFET for pH Measurements

6.1 Introduction

6.2 Functional Testing of ISFET on Wafer Level

 6.2.1 Measurement Set-Up

 6.2.2 Result and Discussion

 6.2.2.1 I_D-V_D Characteristics of Al/Si$_3$N$_4$ ISFET

 6.2.2.2 I_D-V_G Characteristics of Al/Si$_3$N$_4$ ISFET

6.3 Preparation of ISFET for pH Test

 6.3.1 Wafer dicing

 6.3.2 Mounting and Wire Bonding

 6.3.3 Encapsulation

6.4 Testing of ISFET in Aqueous pH Buffers

 6.4.1 Experimental Set-Up

 6.4.2 pH Buffers

 6.4.3 Result and Discussion

 6.4.3.1 I_D-V_D Characteristics of Si$_3$N$_4$ ISFET

 6.4.3.2 pH Sensitivity of Si$_3$N$_4$ ISFET

6.5 Chapter Summary

Chapter 7 Summary, Conclusions and Future Work

7.1 Summary of the Thesis

7.2 Conclusions
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Process steps for ISFET simulation</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>Wet Etch Chemical Solutions.</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>PECVD Si$_3$N$_4$ deposition recipe.</td>
<td>96</td>
</tr>
<tr>
<td>6.1</td>
<td>Measured V_{TH} and sensitivity of ISFETs in three pH buffer solutions</td>
<td>118</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Litmus paper.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Typical pH Glass Electrode.</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Author’s impression of the first ISFET by Bergveld (1970).</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Basic structure of an ISFET.</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>MOSFET and ISFET</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Charge, field and potential profiles of ISFET</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of Synopsys Taurus TCAD</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>MNOS model and ISFET</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>The initial structure of the ISFET</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>The field oxide growth</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>The patterned source and drain region</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>The phosphorus concentration profile at the source and drain region</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>Phosphorus doping profile at x=10</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>Gate oxide growth</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>Phosphorus post dry oxidation</td>
<td>52</td>
</tr>
<tr>
<td>3.10</td>
<td>Phosphorus doping profile post dry oxidation</td>
<td>52</td>
</tr>
<tr>
<td>3.11</td>
<td>Silicon nitride deposition</td>
<td>53</td>
</tr>
<tr>
<td>3.12</td>
<td>Metal contacts patterning</td>
<td>54</td>
</tr>
<tr>
<td>3.13</td>
<td>The final structure of the ISFET with doping profile</td>
<td>55</td>
</tr>
<tr>
<td>3.14</td>
<td>Gate characteristics of n-channel metal-nitride gate ISFET</td>
<td>56</td>
</tr>
<tr>
<td>3.15</td>
<td>Drain characteristics of n-channel metal-nitride gate ISFET</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>ISFET layout</td>
<td>61</td>
</tr>
<tr>
<td>5.16</td>
<td>The cross section of the wafer after n-region source and drain formation.</td>
<td>91</td>
</tr>
<tr>
<td>5.17</td>
<td>The cross section of the wafer after p-region source and drain formation.</td>
<td>93</td>
</tr>
<tr>
<td>5.18</td>
<td>The cross section of the wafer after gate oxidation.</td>
<td>94</td>
</tr>
<tr>
<td>5.19</td>
<td>The cross section of the wafer after silicon nitride deposition.</td>
<td>96</td>
</tr>
<tr>
<td>5.20</td>
<td>The cross section of the wafer after contact via photolithography.</td>
<td>98</td>
</tr>
<tr>
<td>5.21</td>
<td>The cross section of completed CMOS ISFET (a) with metal gate, (b) without metal gate.</td>
<td>101</td>
</tr>
<tr>
<td>5.22</td>
<td>The actual completed CMOS ISFET wafer</td>
<td>101</td>
</tr>
<tr>
<td>6.1</td>
<td>The CMOS ISFET Semiconductor Characterization System (SCS) (a) Micro probe station (b) Keithley 4200 Semiconductor Parameter Analyzer</td>
<td>105</td>
</tr>
<tr>
<td>6.2</td>
<td>CMOS ISFET wafer level measurement set-up</td>
<td>105</td>
</tr>
<tr>
<td>6.3</td>
<td>The output characteristics of n-channel ISFET</td>
<td>106</td>
</tr>
<tr>
<td>6.4</td>
<td>The output characteristics of p-channel ISFET</td>
<td>107</td>
</tr>
<tr>
<td>6.5</td>
<td>Transfer characteristics of n-channel ISFET</td>
<td>109</td>
</tr>
<tr>
<td>6.6</td>
<td>Transfer characteristics of p-channel ISFET</td>
<td>109</td>
</tr>
<tr>
<td>6.7</td>
<td>Preparation of the ISFET from dicing till encapsulation</td>
<td>111</td>
</tr>
<tr>
<td>6.8</td>
<td>Graphic representation of the experimental set-up</td>
<td>113</td>
</tr>
<tr>
<td>6.9</td>
<td>pH buffer solutions from Thermo Scientific</td>
<td>114</td>
</tr>
<tr>
<td>6.10</td>
<td>Output characteristics of n-channel ISFET recorded in different pH buffers using the fixed biasing conditions ($V_G=5V$)</td>
<td>115</td>
</tr>
<tr>
<td>6.11</td>
<td>Output characteristics of p-channel ISFET recorded in different pH buffers using the fixed biasing conditions ($V_G=5V$)</td>
<td>115</td>
</tr>
<tr>
<td>6.12</td>
<td>Plot of the V_G versus pH for ISFETs</td>
<td>119</td>
</tr>
</tbody>
</table>
List of Abbreviations

Al Aluminium
Al₂O₃ Aluminium Oxide
Ag/AgCl Argentum/ Argentum Chloride (Silver/Silver Chloride)
BSC Back sided contact
BOE Buffered Oxide Etch
Ca²⁺ Calcium ion
ChemFET Chemically modified field effect transistor
CMOS Complementary Metal Oxide Semiconductor
CAD Computer Aided Design
I-V Current-Voltage
DIW Deionised Water
DUT Device Under Test
DC Direct Current
FET Field Effect Transistor
FIA Flow injection analysis
HDL Hardware Description Language
H⁺ Hydrogen ion
IGFET Insulated Gate Field Effect Transistor
ISE Ion sensitive electrode
ISFET Ion Sensitive Field Effect Transistor
K⁺ Kalium ion
Hg Mercury
Hg₂Cl₂ Mercury Chloride
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS</td>
<td>Metal Insulator Semiconductor</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>MNOS</td>
<td>Metal-nitride-oxide-semiconductor</td>
</tr>
<tr>
<td>MFCL</td>
<td>Micro Fabrication Cleanroom Laboratory</td>
</tr>
<tr>
<td>µTAS</td>
<td>Micro total analysis system</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Natrium ion</td>
</tr>
<tr>
<td>NMOS</td>
<td>N-channel MOSFET</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen (gas)</td>
</tr>
<tr>
<td>PMOS</td>
<td>P-channel MOSFET</td>
</tr>
<tr>
<td>PVD</td>
<td>Physical Vapour Deposition</td>
</tr>
<tr>
<td>PECVD</td>
<td>Plasma Enhanced Chemical Vapour Deposition</td>
</tr>
<tr>
<td>pCO₂</td>
<td>Power of carbon dioxide</td>
</tr>
<tr>
<td>pH</td>
<td>Power of hydrogen</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>RE</td>
<td>Reference Electrode</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>SCE</td>
<td>Saturated Calomel Electrode</td>
</tr>
<tr>
<td>SCS</td>
<td>Semiconductor Characterization System</td>
</tr>
<tr>
<td>SPA</td>
<td>Semiconductor Parameter Analyzer</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon dioxide or Silicon oxide or Oxide</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>Silicon Nitride</td>
</tr>
<tr>
<td>SPICE</td>
<td>Simulation Program With Integrated Circuit Emphasis</td>
</tr>
<tr>
<td>SnO₂</td>
<td>Stanum oxide</td>
</tr>
</tbody>
</table>
Ta$_2$O$_5$ Tantalum pentoxide
TCAD Technology Computer Aided Design
TAT Turn around time
VHDL-AMS Very-High-Speed-Integrated-Circuit Hardware Description Language (VHDL)-Analog and Mixed Signal (AMS)
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_D</td>
<td>Drain current</td>
<td>A</td>
</tr>
<tr>
<td>V_D</td>
<td>Drain voltage</td>
<td>V</td>
</tr>
<tr>
<td>V_G</td>
<td>Gate voltage</td>
<td>V</td>
</tr>
<tr>
<td>V_{TH}</td>
<td>Threshold Voltage</td>
<td>V</td>
</tr>
<tr>
<td>b</td>
<td>Width of Area</td>
<td>µm</td>
</tr>
<tr>
<td>L</td>
<td>Length of Area</td>
<td>µm</td>
</tr>
<tr>
<td>μ_n</td>
<td>Electron mobility in a channel</td>
<td></td>
</tr>
<tr>
<td>C_0</td>
<td>Oxide capacitance per unit area</td>
<td>F/m²</td>
</tr>
<tr>
<td>V_{DSAT}</td>
<td>Drain voltage at saturation</td>
<td>V</td>
</tr>
</tbody>
</table>
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Publications</td>
<td>146</td>
</tr>
<tr>
<td>B</td>
<td>Collaborations</td>
<td>148</td>
</tr>
<tr>
<td>C</td>
<td>Awards</td>
<td>149</td>
</tr>
<tr>
<td>D</td>
<td>Newspaper Clipping</td>
<td>150</td>
</tr>
<tr>
<td>E</td>
<td>ISFET TUSPREM4 Simulation Code</td>
<td>151</td>
</tr>
<tr>
<td>F</td>
<td>ISFET MEDICI Simulation Code</td>
<td>153</td>
</tr>
</tbody>
</table>
List of Publications

List of Awards

1. Research and Innovation Awards 2009 Gold Medalist

2. BioInno Awards 2009 Silver Medalist

3. PECIPTA 2009 Silver Medalist

4. Malaysia Invention and Innovation Awards 2009 Silver Medalist

5. BioInno Awards 2008 Bronze Medalist

6. Research and Innovation Awards 2008 Bronze Medalist