STUDY OF PLASMA CUTTING EFFICIENCY WITH DIFFERENT OPERATING PARAMETERS

By

MASITA BINTI RAJA MOHAMMAD
(0830510241)

A thesis submitted
In fulfillment of the requirements for the degree of
Master of Science (Manufacturing Engineering)

School of Manufacturing Engineering
UNIVERSITI MALAYSIA PERLIS
MALAYSIA

2010
GRADUATE SCHOOL
UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfillment of a post graduate degree from the Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Malaysia Perlis for any scholarly use which may be made of any material from my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to:

Dean of Graduate School
Universiti Malaysia Perlis (UniMAP)
Jalan Meranti Paya Off Jalan Bukit Lagi
01000 Kangar
Perlis
This thesis titled Study of Plasma Cutting Efficiency with Different Operating Parameters was prepared and submitted by Masita Binti Raja Mohammad (Matrix Number: 0830510241) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the award of degree of Master of Science (Manufacturing Engineering) in Universiti Malaysia Perlis (UniMAP). The members of the Supervisory committee are as follows:

PROF. MADYA DR. BHUVENESH RAJAMONY
Associate Professor
School of Manufacturing Engineering
Universiti Malaysia Perlis
(Head Supervisor)

DR. MUHAMMAD SAIFULDIN ABDUL MANAN
Deputy Dean (Research & Academic)
School of Manufacturing Engineering
Universiti Malaysia Perlis
(Co-Supervisor)

Checked and Approved by

…………………………………………………………

(ASSOCIATE PROFESSOR DR. BHUVENESH RAJAMONY)
Head Supervisor
School of Manufacturing Engineering
Universiti Malaysia Perlis

(Date: …………………………)

School of Manufacturing Engineering
Universiti Malaysia Perlis

2010
ACKNOWLEDGEMENTS

First and foremost, I would like to convey my deepest thanks to the Almighty Allah (S.W.T), for the Omnipotent, the Merciful and the Compassionate, for giving me the strength, patience, courage and determination in compiling this research. Alhamdulillah. The journey towards the completion of this thesis was full of unexpected challenges and it is almost impossible to complete this thesis single-handedly without the help and support of others. I would like to give my heartfelt thanks to everyone who has provided me with such support.

I would like to extend my infinite gratitude to my supervisors Associate Professor Dr. Bhuvnesh Rajamony and Dr. Muhamad Saifuldin Abdul Manan for their extraordinary support and understanding in guiding me through this thesis successfully.

I would like to thank my parents and my dear one, who have given me utmost encouragement and support throughout this research. Thank you.

Last but not least, I would like to express my greatest appreciation to all of the people who have helped me in doing this research project, may ALLAH bless you all.

Thanks to Almighty ALLAH.
TABLE OF CONTENTS

DECLARATION OF THESIS i
PERMISSION TO USE ii
APPROVAL AND DECLARATION SHEET iii
ACKNOWLEDGEMENT iv
TABLE OF CONTENTS v-ix
LIST OF FIGURES x-xii
LIST OF TABLE xiii-xiv
LIST OF EQUATIONS xv
LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE xvi-xviii
ABSTRAK (BM) xix
ABSTRACT (ENGLISH) xx

CHAPTER 1 INTRODUCTION

1.1 Overview .. 1
1.2 Problem Statement 2
1.3 Motivation 3
1.4 Objectives 5
1.5 Scopes .. 6
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 10

2.2 Copper Alloy 14

2.3 Mild Steel 15

2.4 Aluminium 16

2.5 Plasma Arc Cutting 17

2.5.1 System 18

2.5.1.1 Plasma Torch 19

2.5.1.2 Power Supply 20

2.5.1.3 Arc Starting Circuit 21

2.5.2 Process 22

2.5.3 Design Factors 22

2.5.3.1 Air Pressure 23

2.5.3.2 Current Flow Rate 24

2.5.3.3 Cutting Speed 24

2.5.3.4 Arc Gap 25

2.6 Material Removal 25

2.7 Surface Roughness 27

2.8 Taguchi Approach Designs of Experiments (DOE) 27

2.8.1 Introduction 28
CHAPTER 3 METHODOLOGY

3.1 Introduction to the Problem 40
3.2 Overview of the Methodology 41
3.3 Equipments 42
 3.3.1 Plasma Arc Cutting System 42
 3.3.2 Digital Weight Balancer 43
 3.3.3 Mitutoyo CS-3100 (Surface Finish Analysis) 45
3.4 Experimental Planning 46
 3.4.1 Clarify Project Objectives 46
 3.4.2 Clarify All Designs Factors 46
 3.4.3 Determine the Number of Levels 47
3.5 Material Test Sample Work piece 50
3.6 Conduct the Experiment 50
CHAPTER 4 RESULTS, ANALYSIS AND DISCUSSION

4.1 Introduction 53

4.2 Experimental Results 54
 4.2.1 Result Analysis 57
 4.2.2 Average Factor Effects 57
 4.2.3 Analysis of Variance (ANOVA) Table 60
 4.2.4 Predicted Optimum Condition & Confirmation Test 62
 4.2.5 Material Removal Rate 64
 4.2.5.1 Model Term Graph for MRR Factors 64
 4.2.5.2 Model Term Graph for Mild Steel 65
 4.2.5.3 Model Term Graph for Copper Alloy 68
 4.2.5.4 Model Term Graph for Aluminium 71
 4.2.6 Surface Roughness 74
 4.2.6.1 Model Term Graph for Surface Roughness 74
 4.2.6.2 Model Term Graph for Mild Steel 75
 4.2.6.3 Model Term Graph for Copper Alloy 78
 4.2.6.4 Model Term Graph for Aluminium 81

4.3 Confirmation Test for MRR & Ra

4.4 Discussion 85
 4.4.1 Effects of Design Factor over Material Removal Rate 85
CHAPTER 5 CONCLUSION

5.1 Contribution to This Work 89
5.2 Future Work Recommendation 90
5.3 Commercialize Potential 91
5.4 Conclusion 91

REFERENCES 93
APPENDICES 96
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Selco Genesis 90 Plasma Arc Cutter</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Plasma State</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Plasma Arc Cutting in Industry</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Plasma Arc Cutting</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Plasma Arc Cutter System</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>The Internal Component of Cutting Torch</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Plasma Arc Torch</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>DC Power Supply</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Arc Starting Circuit</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Plasma Arc Cutting Process</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology Overview</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Alfa Mirage MD-300S</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>MITUTOYO CS-31000</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Material Sample</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Weight Measured Before and After Cutting Process</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Cutting Experiment Process</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Surface Roughness Experiment</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Pressure (A) Factor Graph for MRR</td>
<td>65</td>
</tr>
</tbody>
</table>
4.2 Current Flow Rate (B) Factor graph for MRR
4.3 Cutting Speed (C) Factor Graph for MRR
4.4 Arc Gap (D) Factor Graph for MRR
4.5 Factor Influence Percentages for MRR
4.6 Pressure (A) Factor Graph for MRR
4.7 Current Flow Rate (B) Factor graph for MRR
4.8 Cutting Speed (C) Factor Graph for MRR
4.9 Arc Gap (D) Factor Graph for MRR
4.10 Factor Influence Percentages for MRR
4.11 Pressure (A) Factor Graph for MRR
4.12 Current Flow Rate (B) Factor graph for MRR
4.13 Cutting Speed (C) Factor Graph for MRR
4.14 Arc Gap (D) Factor Graph for MRR
4.15 Factor Influence Percentage for MRR
4.16 Pressure (A) Factor Graph for Surface Roughness
4.17 Current Flow Rate (B) Factor Graph for Surface Roughness
4.18 Cutting Speed (C) Factor Graph for Surface Roughness
4.19 Arc Gap (D) Factor Graph for Surface Roughness
4.20 Factor Influence Percentage for Surface Roughness
4.21 Pressure (A) Factor Graph for Surface Roughness
4.22 Current Flow Rate (B) Factor Graph for Surface Roughness 79
4.23 Cutting Speed (C) Factor Graph for Surface Roughness 80
4.24 Arc Gap (D) Factor Graph for Surface Roughness 80
4.25 Factor Influence Percentage for Surface Roughness 81
4.26 Pressure (A) Factor Graph for Surface Roughness 81
4.27 Current Flow Rate (B) Factor Graph for Surface Roughness 82
4.28 Cutting Speed (C) Factor Graph for Surface Roughness 83
4.29 Arc Gap (D) Factor Graph for Surface Roughness 83
4.30 Factor Influence Percentage for Surface Roughness 84
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Technical Features for Selco Genesis 90</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Technical Features of Digital Weight Balancer</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Level of Design Factors for Mild Steel</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Level of Design Factors for Copper Alloy</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Level of Design Factors for Aluminium</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Experiment Layout</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Experiment Result for MRR – Mild Steel</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Experiment Layout for MRR – Copper Alloy</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Experiment Layout for MRR – Aluminium</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Experiment Result for Surface Roughness – Mild Steel</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Experiment Result for Surface Roughness – Copper Alloy</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>Experiment Result for Surface Roughness – Aluminium</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>Average Effects of Factors (S/N Ratio of MRR) – Mild Steel</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>Average Effects of Factors (S/N Ratio of MRR) – Copper Alloy</td>
<td>58</td>
</tr>
<tr>
<td>4.9</td>
<td>Average Effects of Factors (S/N Ratio of MRR) – Aluminium</td>
<td>59</td>
</tr>
<tr>
<td>4.10</td>
<td>Average Effects of Factors (S/N Ratio of Ra) – Mild Steel</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>Average Effects of Factors (S/N Ratio of Ra) – Copper Alloy</td>
<td>59</td>
</tr>
</tbody>
</table>
4.12 Average Effects of Factors (S/N Ratio of Ra) – Aluminium 59
4.13 Analysis of Variance for MRR – Mild Steel 60
4.14 Analysis of Variance for MRR – Copper Alloy 60
4.15 Analysis of Variance for MRR – Aluminium 61
4.16 Analysis of Variance for Ra – Mild Steel 61
4.17 Analysis of Variance for Ra – Copper Alloy 61
4.18 Analysis of Variance for Ra – Aluminium 62
4.19 Optimum Condition and Value for MRR – Mild Steel 62
4.20 Optimum Condition and Value for MRR – Copper Alloy 63
4.21 Optimum Condition and Value for MRR – Aluminium 63
4.22 Optimum Condition and Value for Ra – Mild Steel 63
4.23 Optimum Condition and Value for Ra – Copper Alloy 64
4.24 Optimum Condition and Value for Ra – Aluminium 64
LIST OF EQUATIONS

Equations No.

(1) \[\text{MRR} = \frac{\text{WRW}}{\text{T}} \quad \text{[g]} \]

(2) \[\text{MRR} = \frac{\text{WRV}}{\text{T}} \quad \text{[mm}^3\text{]} \]

(3) \[\text{WRV} = \frac{\text{WRW}}{\rho} \]

(4) \[\text{MSD} = \left(\begin{array}{c} \text{...} \end{array} \right) \quad , \text{QC} = \text{N} \]

(5) \[\text{S/N} = 10\log_{10} \quad , \text{QC} = \text{N} \]

(6) \[\text{MSD} = \left(\begin{array}{c} \text{...} \end{array} \right) \quad , \text{QC} = \text{S} \]

(7) \[\text{S/N} = -10\log_{10} \quad , \text{QC} = \text{S} \]
(8) \(MSD = \ldots \), QC = B

(9) \(S/N = -10 \log 1 \ldots \), QC = B
LIST OF SYMBOLS ABBREVIATIONS OR NOMENCLATURE

ANOVA Analysis of Variance

DOE Design of Experiment

OA Orthogonal Array

g gram

QC Quality Characteristic

MSD Mean Standard Deviation

CF Correction Factors

S’ Factor sum of squares

P Percentage

S/N Single to Noise Ratio

ST Total sum of square

SA Sum of square of Factor A

PA Percentage Deviation of Factor A

SB Sum of square of Factor B
PB Percentage Deviation of Factor B

SC Sum of square of Factor C

PC Percentage Deviation of Factor C

SD Sum of square of Factor D

PD Percentage Deviation of Factor D

T Sum of all observations

\[\sum Y_i^2 \] Sum of square Deviation
KAJIAN KECEKAPAN PEMOTONGAN ARCA PLASMA DENGAN FAKTOR-FAKTOR YANG BERBEZA

ABSTRAK

ABSTRACT

Plasma, a fourth state of matter distinct from solid or liquid or gas and present in stars and fusion reactors; a gas becomes plasma when it is heated until atoms lose all their electrons, leaving a highly electrified collection of nuclei and free electrons. The usage of advanced machining, such as Plasma Arc Cutting machine to cut Mild Steel, Copper Alloy and Aluminium was very limited in the industry. Selco Genesis 90 Plasma Arc Cutting machine was used to cut Copper Alloy, Aluminium and Mild Steel in this study. The usage of Taguchi approach Design of Experiments from the designing steps until the analyzing phase from the experiment was used. In this study, Design of Experiment L-9 (34) layout is used. In this study, the parameters determined were the air pressure [bar], current flow rate [A], cutting speed [mm/min] and arc gap [mm]. These parameters used to analyze the setting required for optimizing the process variables for Plasma Arc Cutting machine to gain the best combination. The effect of these factors was the calculation of Material Removal Rate (MRR) and Surface Roughness (Ra). Confirmation test must be done to confirm the value estimated through the software. The confirmation run was done by using the setting gain from the software. The estimated optimum value and the actual value obtained from the confirmation test that is allowed are in range 10%.
CHAPTER 1

INTRODUCTION

1.1 Overview

The topic for the thesis writing is to study of the efficiency of plasma cutting with different operating parameters. The focus on this project is to obtain the best combination of those parameters in order to achieve optimum performance measures.

Nowadays, a lot of industries in the government sector and private sector are advances in the field of plasma cutting and have permitted the application of this technology in their company. The function of this plasma cutting is an arc cutting process that cuts metal by melting a localized area with the heat of a constricted arc. The various shapes of electric arc are emergent properties of nonlinear pattern of current and electric field. The arc occurs in the gas-filled space between two conductive electrodes and its results in a very high temperature, capable of melting or vaporizing virtually anything. The high temperature plasma arc cuts through a wide variety of metals at high speeds.
Advanced machining such as plasma arc cutting also grows fast in Malaysia. Currently it is used in the industry. So advanced material such as nickel alloy can be used as the work piece of this machine.

Plasma cutters are used in place of traditional sawing, drilling, machining, punching, and cutting. The high-temperature plasma arc cuts through a wide variety of metals at high speeds. Although plasma arc cutting can cut most metals at thicknesses of up to 4 to 6 inches, it provides the greatest economical advantages, speed, and quality on carbon steels under 1 inch thick, and on aluminum and stainless steels under 3 inches thick.

Plasma Arc cutting has been widely used in the industry but the fundamental of the usage is still limited. The feasibility and effectiveness of the usage need to be approving by using the Fractional Factorial from the Design of Experiment.

1.2 Problem Statement

Cutting process is the most important process to produce a product. It takes a lot of time to cut the material. So this study has been developed to find the solution about the problem of the cutting process, so the process will improve. Below is the problem of the cutting process:

i) Traditional way of cutting process takes a lot of time.

ii) What are the most factors that influence the cutting process?
iii) What are the optimum conditions to achieve optimum performances?

iv) The effective way to conduct the cutting process for Aluminium, Copper Alloy and Mild Steel.

1.3 Motivation

The focus on this research is to study, runs and to analyze plasma arc cutting efficiency based on several parameters. The machine used in this study is Selco Genesis 90. The new portable plasma cut generator in the genesis range by Selco features a modern innovative design. Exploiting the inverter resonant, this system is even more compact and lightweight and offers excellent quality.

The generator is the most powerful one in its weight category and is provided with ergonomic handle for easy transport. If used beyond the rated parameters a thermal device and mains voltage protection, protect the internal components from malfunctioning. Figure 1.1 below shows the Selco Genesis 90 Plasma Arc Cutter. Further information about this machine is discusses in part 3.3.1
Optimization of process parameters is the key step in Taguchi method to achieve high quality without increasing cost such as time and money. This is because optimization of process parameters can improve quality characteristic and the optimal process parameters obtained from the Taguchi method are insensitive to the variation of environmental conditions and other noise factors. C. Montgomery says basically, classical process parameter design is complex and not easy to use especially when a large number of experiments have to be carried out when the number of the process parameters increases. The Taguchi method uses a special design of orthogonal arrays to study the entire process parameter space with a small number of experiments only (Roy, 2001).

There are three categories of the quality characteristic in the analysis of the S/N ratio, i.e. the smaller is better, bigger is better and nominal is the best. The S/N ratio for each level of process parameters is computed based on the S/N analysis. Regardless of the category of the quality characteristic, a larger S/N ratio corresponds to a better quality