

DESIGN & DEVELOPMENT OF AN EMBEDDED NETWORK SECURITY SYSTEM (ENSS)

cot

By

NASIM AHMED (0630210132)

his tem is A thesis submitted In fulfillment of the requirements for the degree of Master of Science (Computer Engineering)

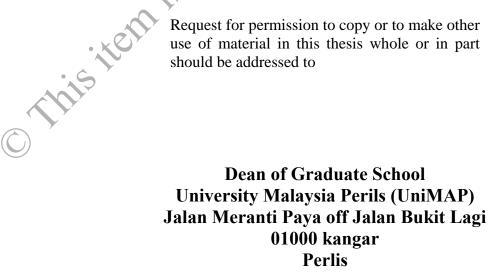
School of Computer and Communication Engineering **UNIVERSITY MALAYSIA PERLIS (UniMAP) MALSYSIA**

2009

UNIVERSITY MALAYSIA PERLIS

		DECLARATION OF THESIS
Authors Full Name	e :	NASIM AHMED
Date of birth	:	26 September 1979
Title		DESIGN & DEVELOPMENT OF AN EMBEDDED NETWORK SECURITY SYSTEM (ENSS)
Academic Session	:	2007/2008
		nesis becomes the property of University Malaysia Perlis (UniMAP) ersity library. This thesis is classified as :
CONFIDENTIAL		(Contains confidential information under the Official Secret Act 1972)
RESTRITED		(Contains restricted information as specified by the organization where research was done)
OPEN ACCESS		I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
	pose of	on to the University Malaysia Perlis to reproduce this thesis in whole research or academic exchange only (except during a period ofe).
		Certified by
SIGNAT	ΓURE	SIGNATURE OF SUPERVISOR
Q-0397	7113	ASSOCIATE PROFESSOR DR. R. BADLISHAH BIN AHMAD
(PASSPORT NO.	/ NEW	IC NO.) NAME OF SUPERVISOR
Date:		Date:

NOTES: * If there is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.


GRADUTE SCHOOL

UNIVERSITY MALAYSIA PERILS

copyright **PERMISSION TO USE**

In presenting this thesis in fulfillment of a post graduate degree from the University Malavsia Perils, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without any written permission. It is also understood that due recognition shall be given to me and to University Malaysia Perils for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make other use of material in this thesis whole or in part should be addressed to

ACKONWLEDGEMENT

First and foremost, I would like to convey my deepest graduate to the Almighty Allah (SWT), the Omnipotent, the Merciful and the Compassionate, for giving me strength, patience, courage and determination in compiling this research. Alhamdulilah.

A journey is easier when you travel together. Interdependence is certainly more valuable than independence. This thesis is the result of work whereby I have been accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my gratitude to all of them.

With immense pleasure I express my sincere gratitude, regards and thanks to my supervisors, Associate Professor Dr. R. Badlishah Ahmad, and Zahereel Ishwar Abdul Khalib for the excellent guidance, invaluable suggestions and continuous encouragement at all stages of my research work. Their interest and confidence in me was the reason for all the success I have made. I have been fortunate to have them as my guides as they have been a great influence on me, both as a person and as a professional.

It was a pleasure to be associated with Computer Computing Research Cluster (ECRC, UniMAP) and I would like to thank the entire Lab member. Special thanks to Md. Mostafijur Rahman, Yacine Laalaoui, Mr. Basir, those are at some or the other point involved in my works. I would like to thank all my friends for their smiles and friendship making my life at (ECRC) enjoyable and memorable.

Above all, I am blessed to have such caring parents. I convey my deepest gratitude to my parents and sisters for their invaluable love, affection, encouragement and supports. My heartfelt thanks go out to my dear wife Mst. Noorzahan Begum, who has been so patient and supportive since I started my research. She has been my inspiration and provided the encouragement when my research progress was slow, and when I felt like spiraling out of control, she has brought serenity. It should be no surprise that this thesis would be impossible without her. I dedicate this thesis to my parents and beloved wife.

The chain of my gratitude would be definitely incomplete if I forget to thank the first cause of this chain, using Aristotle's words, The Prime Mover.

Thanks to Almighty ALLAH.

NASIM AHMED UNIVERSITY MALAYSIA PERLIS nasim751@yahoo.com

TABEL OF CONTENTS

	F	Pages			
DECLARATION OF THISIS	i				
DECLARATION OF THISIS PERMISSION TO USE ACKNOWLEDGEMENT					
ACKNOWLEDGEMENT					
TABLE OF CONTENTS	V	1			
LIST OF TABLES	х	ζ.			
LIST OF FIGURES	Х	ĸi			
LIST OF ABBREVIATIONS	Х	ΚV			
ABSTRAK (BM)	х	XX			
PERMISSION TO USE ii ACKNOWLEDGEMENT iv TABLE OF CONTENTS v LIST OF TABLES x LIST OF FIGURES xi LIST OF ABBREVIATIONS xv ABSTRAK (BM) xx ABSTRACT (ENGLISH)					
CHAPTER 1: INTRODUCTION					
		Pages			
1.1 Overview		1			
1.2 Problem Definitions		6			
1.3 Motivation		9			
1.4 Research Objectives		11			
1.5 Summary		11			
1.6 Thesis Outline		12			

CHAPTER 2: LITERATURE REVIEW

	2.1	Introduction	14
	2.2	Network Security	15
	2.2.1	Primary Threats to Network Security Types of Network Attacks	15
	2.2.2	Types of Network Attacks Data Security TCP/IP Protocol Fundamental Port Scan Port Scan Techniques Full Open Scan	16
	2.3	Data Security	18
	2.4	TCP/IP Protocol Fundamental	19
	2.5	Port Scan	21
	2.5.1	Port Scan Techniques	22
	2.5.2	Full Open Scan	23
	2.5.3	Half Open Scan	25
	2.5.4	Stealth or TCP Flag Scan	26
	2.5.5	UDP Scan	28
	2.6	Port Scan Attack Detection	30
	2.7	Distributed Denial-Of-Service (DDoS) Attacks	32
	2.7.1	Smurf Attack	35
	2.7.2	Smurf Attack Prevention	38
$(\dot{\mathbb{C}})$	2.8	Embedded IDS	40
	2.9	Summary	41

CHAPTER 3: EMBEDDED SYSTEM BASED ON GNU/LINUX

3.1	Intro	oduction	43
3.2	Devi	ice Driver	48
3.3	Emb	bedded Hardware	51
3.4	Sing	ele Board Computer (SBC)	56
3.5	Oper	rating System (OS)	59
3.6	Sum	imary	63
		rating System (OS) mary	
CHA	АРТЕН	R 4: SYSTEM DEVELOPMENT	
4.1		Introduction	66
4.2		Hardware Components	66
4	.2.1	TS-5500 Single Board Computer	67
4	.2.2	Compact Flash (CF) Memory Card	68
4	.2.3	3Com Superstack 3 switch 4228G	69
4	.2.4	Hub	70
4.2.5	5	Desktop Computer	70
4.3		TS-Linux Operating System (OS)	71
4	.3.1	TS-5500 Configuration	72
4	.3.2	Embedded Operating System for TS-5500 SBC	74
4	.3.3	GNU Compiler Connections (GCC)	75
4.4		Linux (OS) Environment	75

	4.5	Software Description	76
	4.5.1	Overview of ENSS	76
	4.6	ENSS Application Modules	80
	4.6.1	Port Scanning	80
	4.6.2	Port Scan Attack Detection	89
	4.6.3	Smurf Attack Detection	92
	4.7	Summary	97
	СНАРТЕІ	Smurf Attack Detection Summary R 5 : RESULTS AND DISCUSSION	
	5.1	Introduction	98
	5.2	Port Scan Using Various Techniques on ENSS	98
	5.2.1	Horizontal Port Scan on ENSS	114
	5.3	Port Scan Using Various Techniques on Desktop	116
	5.4	Comparison between Desktop PC and ENSS	118
	5.5	Horizontal Port Scan on Desktop	118
	5.6	Comparison between ENSS Application Modules and other PC Based	
		Port Scan Software	121
\bigcirc	5.7	Port Scan Attack Detection on ENSS	122
	5.8	Smurf Attack Detection on ENSS and Desktop PC	124
	5.9	Hardware Performance	125
	5.9.1	CPU Utilization	126
	5.9.2	ENSS CPU Utilization with Port Scan Program Executed	128

	5.9.3	ENSS CPU Utilizati	ion with Port Scan Attack Detection Program	
		Executed		130
	5.9.4	ENSS CPU Utilizati	ion with Smurf Attack Detection Program Execute	ed 132
5	5.10	Memory Utilization	×	134
	5.10.1	ENSS Memory Util	ization with Port Scan Program Executed	135
	5.10.2	ENSS Memory Utili	ization with Port Scan Attack Detection Program	
		Executed	-0 ²	136
	5.10.3	ENSS Memory Utili	ization with Smurf Attack Detection Program	
		Executed		137
5	5.11	Summary		138
			sted by oright	
(CHAPTER	8 6: CONCLUSION		
			XCC	
6	5.1	Introduction		140
6	5.2	Future work		142
6	5.3	Contribution		142
		References		144-151
		Publications		152-153
6	the second			
	APPEND	ICES		Pages
<u> </u>				
A	Appendix A	A Pa	acket Capture Routine	154-156
A	Appendix B	C C	hroot Development Environment	157
A	Appendix C	Pi	ublications	158-161

LIST OF TABLES

	1.1	Various embedded hardware cost	8
	3.1	Various embedded hardware cost Describes the directories Information appliances	47
	3.2	Information appliances	55
	3.3	Different embedded architectures Evaluation results of EOS SBC ethernet set-up	59
	3.4	Evaluation results of EOS	62
	4.1	SBC ethernet set-up	73
	4.2	Common data link types	83
	5.1	Various types of techniques for well known port scan time on ENSS	103
	5.2	Various types of techniques for registered port scan time on ENSS	108
	5.3	Various types of techniques for dynamic port scan time on ENSS	114
	5.4	Various types of techniques for well known port scan time on desktop-PC	116
	5.5	Various types of techniques for registered port scan time on desktop-PC	116
	5.6	Various types of techniques and dynamic or private port scan on desktop-PC	117
	5.7	Comparison between desktop PC and SBC specification	118
<	5.8	Comparison between ENSS application module and desktop port scan software	121
))	5.9	Smurf attack detection on ENSS	124
	5.10	Smurf attack detection on desktop PC	124

 \bigcirc

LIST OF FIGURES

	1.1	Mutually compatibile design among software, hardware & applications	5
	2.1	Basic port scan model diagram	23
	2.2(a)	Full-Open TCP port scan when port is opened	24
	2.2(b)	Full-Open TCP port scan when port is closed	24
	2.3(a)	Half-Open TCP port scan when port is opened	25
	2.3(b)	Half-Open TCP port scan when port is closed	26
	2.4(a)	Stealth or TCP flag port scan when port is opened	27
	2.4(b)	Stealth or TCP flag port scan when port is closed	27
	2.5(a)	UDP Port scan when port is opened	29
	2.5(b)	UDP Port scan when port is closed	30
	2.6	Distributed Denial-Of-Service attack (DDoS)	34
	2.7	Smurf attack diagram	37
	2.8	ICMP echo request/reply message format	38
	3.1	Split view of a kernel	45
\bigcirc	3.2	Difference between microprocessor and microcontroller embedded system	53
	4.1	TS-5500 Single Board Computer (SBC)	68
	4.2	Compact Flash (CF) memory card	68-69
	4.3	3Com Superstack switch	69
	4.4	TL – HP8MU (TP - LINK) Hub	70

	4.5	Desktop PC	71
	4.6	ENSS state machine diagram	77
	4.7(a)	Overall system architecture	78
	4.7(b)	Embedded application modules	79
	4.7(c)	Embedded application modules Possible deployment of ENSS Port scan technique	79
	4.8	Port scan technique	81
	4.9	Port scan program flowchart	86-87
	4.10	Port scan algorithm for TCP-Half open and UDP technique	87-88
	4.11	Port scan program (service name, protocol name, and port number) algorithm.	89
	4.12	Steps in an attack	90
	4.13	Flowchart for port scan attack detection	91
	4.14	Smurf attack packet flow	93
	4.15	ICMP echo request/response (ping) message formats	94
	4.16(a)	ENSS possible deployment for detect Smurf attack	95
	4.16 (b)	Smurf attack detection flowchart	96
	5.1	TCP-SYN port scan for well-known port (100-120) on ENSS	99
<	5.2	TCP-FIN port scan for well-known port (100-120) on ENSS	100
\bigcirc	5.3	TCP-XMAS port scan for well-known port (100-125) on ENSS	101
	5.4	UDP Port scan for well-known port (100-123) on ENSS	102
	5.5	TCP-SYN port scan for registered port (1024-1059) on ENSS	104
	5.6	TCP-FIN port scan for registered port (1024-1050) on ENSS	105
	5.7	TCP-XMAS port scan for registered port (102-1050) on ENSS	106

	5.8	UDP port scan for registered port (1025-1050) on ENSS	107
	5.9	TCP-SYN port scan for dynamic port (49152-49170) on ENSS	109
	5.10	TCP-FIN port scan for dynamic port (49152-4917s) on ENSS	110
	5.11	TCP-XMAS port scan for dynamic port (49152-49175) on ENSS	111
	5.12	UDP port scan for dynamic port (49152-49175) on ENSS	112
	5.13	Port scan on ENSS with port number, protocol name, and service name	113
	5.14	Horizontal port scan on ENSS	115
	5.15	Horizontal port scan on desktop	119
	5.16	Port scan on desktop with port number, protocol name, and service name	120
	5.17	Port scan attack detection on ENSS	123
	5.18 (a)	SBC1st day CPU utilization	127
	5.18(b)	SBC 2nd day CPU utilization	127
	5.18 (c)	SBC 3rd day CPU utilization	128
	5.19 (a)	ENSS 1st day CPU utilization with port scan program	129
	5.19 (b)	ENSS 2nd day CPU utilization with port scan program	129
	5.19 (c)•	ENSS 3rd day CPU utilization with port scan program	130
	5.20 (a)	ENSS 1st day CPU utilization with port scan attack detection program	131
	5.20 (b)	ENSS 2nd day CPU utilization with port scan attack detection program	131
\bigcirc	5.20(c)	ENSS 3rd day CPU utilization with port scan attack detection program	132
	5.21(a)	ENSS 1st day CPU utilization with Smurf attack detection program	133
	5.21 (b)	ENSS 2nd day CPU utilization with Smurf attack detection program	133
	5.21 (c)	ENSS 3rd day CPU utilization with Smurf attack detection program	134
	5.22	ENSS Memory utilization with default system packages	135

	5.23	ENSS memory utilization at the time of execute port scan program	136
	5.24	ENSS Memory utilization at the time of execute port scant attack	137
		detection program	
	5.25	ENSS Memory utilization at the time of execute Smurf attack detection	138
		entropy unitation at the time of execute port scale dates detection program ENSS Memory utilization at the time of execute Smurf attack detection program	
\bigcirc)		

LIST OF ABBREVIATIONS

	AC	Alternating Current
	АСК	Acknowledgement
	ACPI	Advanced Configuration and Power Interface
	API	Application Programming Interface
	AMD	Advance Micro Device
	ANSI	American National Standard Institute
	ARPANET	Advanced Research Project Agency Internet Work
	ARM	Advance RISC Machine or Acorn RISC Machine
	BIOS	Basic Input/Out-Put System
	BSD	Berkeley Software Distribution
	CF	Compact Flash
	CPU	Central Processing Unit
	CERT/CC	Computer Emergency Response Team Coordination Center
	DDoS	Distributed Denial-of-Service Attack
	DOD	Department of Defense
	DoS	Denial-of-Service
	DOS	Disk Operating System
	DNS	Domain Name System
	DRAM	Dynamic Read Access Memory
	EOS	Embedded Operating System
	EEPROM	Electrically Erasable Programmable Read-Only Memory

	ENSS	Embedded Network Security System
	EXT2	Second Extended File system
	EXT3	Third Extended File system
	FAT	File Allocation Table
	FSB	Front Side Bus
	FTP	File Transfer Protocol
	GCC	Gnu Compiler Collection
	GNU	Gnu's Not Unix
	GPL	General Public License
	GUI	Graphical User Interface
	НТТР	Hypertext Transfer Protocol
	IBM	International Business Machine
	ICMP	Internet Control Message Protocol
	ICs	Integrated Circuits
	IDE	Integrated Device Electronics
	IDS KOT	Intrusion Detection System
	IEEE	Institute of Electrical and Electronics Engineers
	I/O	Input Output
	IPV	Internet Protocol Version
	IP	Internet Protocol
	IPS	Intrusion Prevention System
	ISPs	Internet Service Providers
	JFS	Journaled File System

	JPL	Jet Propulsion Laboratory
	JVM	Java Virtual Machine
	LAN	Local Area Network
	LCD	Liquid Crystal Display
	LSI	Large – Scale – Integrated
	MB	Megabyte
	MIPS	Million Instruction Per Second
	MMU	Memory Management Unit
	NIDS	Network Intrusion Detection System
	NFS	Network File System
	OEM	Original Equipment Manufacture
	OOP	Object Oriented Programming
	OS	Operating System
	PC	Personal Computer
	PCMCIA	Personal Computer Memory Card International Association
	PDA	Personal Digital Assistant
	PSH	Push
	POSIX	Portable Operating System Interface
	R & D	Research and Development
	RISC	Reduce Instruction Set Computer
	RFC	Request for Comments
	ROM	Read Only Memory
	RAM	Random Access Memory

	RTOS	Real Time Operating System
	SBC	Single Board Computer
	SCP	Secure Copy
	SCSI	Small Computer System Interface
	SDRAM	Synchronous Dynamic Random Access Memory
	SSH	Support Secure Shell
	SNMP	Simple Network Management Protocol
	SP2	Service Pack2
	SSD	Solid State Disk
	SRAM	Static Random Access Memory
	SVGA	Super Video Graphics Array
	SYN	Synchronize
	ТСР	Transmission Control Protocol
	TCBs	Transmission Control Blocks
	TFTP	Trivial File Transfer Protocol
	TS C	Technologic System
	UART	Universal Asynchronous Receiver Transmitter
	UDP	User Datagram Protocol
	URG	Urgent
	USB	Universal Serial Bus
	VHDL	Very High Hardware Description Language
	VHSIC	Very High Speed Integrated Circuit
	VGA	Video Graphics Array

Voice Over Internet Protocol

WAN Wide Area Network

VoIP

onthis item is protected by original convitation

ABSTRAK

Membangun dan mereka bentuk Satu Sistem Keselamatan Rangkaian Terbenam (ENSS)

Sistem terbenam makin menjadi satu penyelesaian yang menarik bagi pelbagai aplikasi kerana kestabilan, penggunaan kuasa elektrik yang rendah dan kemudahalihan. Tesis ini membincangkan rekabentuk dan pembangunan sebuah sistem terbenam bagi aplikasi keselamatan jaringan (ENSS), yang berasaskan komputer di atas satu papan menggunakan sistem operasi(OS) GNU/Linux. Perisian ENSS distrukturkan kedalam tiga modul yang dinamakan, pengimbas terminal (port scan), serangan pengimbas terminal, pengesan serangan 'smurf'. Pendekatan yang diambil ialah membina perisian yang mampu mengimbas terminal menggunakan teknik half-open,UDP dan horizontal selain dari mengesan kemungkinan serangan imbasn terminal dan serangan smurf. Perisian ini dijanakan keatas komuter sistem terbenam berasaskan pemproses x86 keluaran TS-Linux. ENSS direkabentuk untuk menjalankan operasi imbasan port yang bertujuan mengenalpasti kelemahan host dengan menghantar pengesan terminal. Serangan pengimbas terminal pula berfungsi untuk mengesan percubaan imbasan terminal yang dilakukan dan mengumpul maklumat sistem komputer berkenaan. Sementara pengesan serangan smurf pula berfungsi unutk mengesan serangan smurf (siar raya paket yang disalin dan analisa maklumat trafik ICMP). Hasil kajian menunjukan bahawa prestasi sistem yang dijanakan diatas sistem terbenam adalah hampir sama dengan pengimbas terminal yang lain yang dijanakan diatas PC yang mempunyai kuasa pemprosesan yang tinggi. Prestasi ENSS dari segi penggunaan CPU dan ingatan menunjukan bahawa sistem terbenam GNU/Linux adalah sesuai bagi aplikasi keselamatan rangkaian walaupun mempunyai kemampuan perkakasan pemprosesan dan ingatan yang rendah. Harga komputer sistem terbenam yang at EN rendah dan kemudahalihan menjadikan ENSS satu alternatif yang baik bagi sistem pengesan keselematan jaringan.

ABSTRACT

Embedded system is becoming an interesting solution to various applications due to high stability, minimal power consumption, and portability. This thesis describes the design and development of an embedded system for Network Security Applications (ENSS), which is based on Single Board Computer (SBC) utilizing GNU/Linux Operating System (OS). The ENSS software is structured in three modules namely Port Scan, Port Scan Attack and Smurf Attack Detection. The approach is to develop software which performs port scan using half-open, UDP, and horizontal techniques as well as to detect the possible port scan attack and Smurf Attack. The software is executed on an x86 based TS-Linux Single Board Computer (SBC). ENSS is designed to operate Port scan, which is used for discovering hosts weaknesses by sending port probes. Port scan attack detection is to identify port scan attempts and find out information about the machine. The Smurf Attack Detection is used to identify Smurf based attack (Broadcast Duplicate Packet and analyze ICMP traffic information). Results show that the system performance on the embedded platform is almost similar to other port scanners running on a much better performance PC. The ENSS performance in orthis item is protected by terms of CPU utilization and memory usage indicate that embedded GNU/Linux platform is suitable for network security applications although under hardware limitations of memory and processing speed. Lower cost of the Single Board Computer and the extra benefit of portability make ENSS a good alternative system for network security

CHAPTER 1

INTRODUCTION

1.1 Overview

Security is an important issue for all computer networks. It is a continuing problem with constant evolution and changes. Hackers and intruders can create many successful attempts to cause the crash of networks and web services of individual companies. Many methods were developed to ensure the protection of the network infrastructure and communication over Internet, such as firewalls, encryption, and virtual private networks.

Intrusion detection is a set of techniques and methods which are used to identify the malicious activity on the network as well as host level (L. Vokorokos, 2006). Network – oriented intrusion detection systems can be roughly divided into distributed IDSs and network-based IDSs. Network-based IDSs take a different perspective and change their focus from the computational infrastructure (the hosts and their operating systems) to the communication infrastructure (the network and its protocol) (Snapp et al., 1991). A survey of network-oriented IDSs is given in Mukherjee and Levit (Mukherjee, Heberlein, & Levitt, 1994).

Given the recent growth of the Internet, network-scanning incidents are becoming common events of life. Although several network information centers have declared that network scanning is an illegal activity. As an example, China Education and Research Network (CERNET) enacted a law to prohibit network scanning (such as port scans and IP-address scans) in Nov 27, 1999, the events still occurring and becoming more frequent. The reason why network scanning occurs increasingly is pretty obvious because network scanning is a prerequisite of many network attacks. A successful attack usually proceeds by scanning. With a good TCP/IP scanner tool, hackers will quickly find which OS host is running. The current methods of detection and protection against network scanning are limited in their strategy.

The aim of network scanning is used to obtain the information of a host on a particular network. Generally, we can gain it through three ways: the first is through normal use, the second is through misuse, and the last way goes through sniffing. Network scanning implementation includes the first and the second method. The purpose of network scanning can be summarized as:

• Obtaining the application information of the host, for example, which port service name and protocol works.

Obtaining the basic system information of the host, such as: hardware platform,
 operating system (OS), including its version.

An embedded system is defined as a combination of computer hardware and software and perhaps additional mechanical and other parts that perform a dedicated function. In some cases, embedded systems can be a part of a larger system or a product (Barr, 2002). However, there are many basic design differences between embedded systems and conventional personal computers (PCs). Some of the distinct attributes of embedded systems are (Koopman & 1999):

- A dedicated processor that may be specifically designed for the application.
- Application specific software that may not even use an operating system.
- Often no standard keyboard.
- Limited or no display capability.
- Designed to react to external periodic and/or a periodic event.
- Designed to operate in a real time environment.

Embedded systems have become ubiquitous due to the wide range of functionality it provides. A recent survey on the sale of microprocessors worldwide has indicated that while the number of personal computers shipped each year exceeds 140 million units; the number of embedded microprocessors shipped each year exceeded 5 billion units (Nick Tredennick & 2000). These numbers suggest the overwhelming presence of embedded systems in today's technology savvy world. While the PC market has stagnated in recent years, the embedded systems market is growing every year. From an applications perspective, embedded systems can be broadly categorized into four types (Koopman & .

cô

Y. General computing

- Applications similar to desktop computing but in an embedded package.
- Video games, automatic tellers.
- 2. Control systems
 - Closed- loop feedback control of a real- time system.
 - Automobiles, chemical processes, power plants, flight control.