MECHANICAL PROPERTIES AND THERMAL PROPERTIES OF PMMA/EVA/KENAF SHORT FIBER COMPOSITES PREPARED BY TWIN SCREW EXTRUDER AND INJECTION MOLDING

LUKMAN HAJIDA-OH

SCHOOL OF MATERIALS ENGINEERING UNIVERSITI MALAYSIA PERLIS

2012

MECHANICAL PROPERTIES AND THERMAL PROPERTIES OF PMMA/EVA/KENAF SHORT FIBER PREPARED BY TWIN SCREW EXTRUDER AND INJECTION MOLDING

By LUKMAN HAJIDA-OH

(1131620008)

A thesis submitted

In partial fulfillment of requirements for degree of

Master of Science (Polymer Engineering)

SCHOOL OF MATERIALS ENGINEERING

UNIVERSITI MALAYSIA PERLIS

2012

ACKNOWLEDGEMENT

بِسُم ٱللَّهِ ٱلرَّحْمَن ٱلرَّحِيم ٢

In the name of Allah, the Beneficent, the Merciful

With blessings and peace be upon the most honorable Prophets and Messengers, Muhammad and his Folk, Companies and those who follow noble way.

Alhamdulillah and thank to Allah, who has given me the perseverance and strength to completion of his research. It gives a great pleasure to write this acknowledgement. First of all, I would like to thank my supervisor, Dr. Du Ngoc Uy Lan who is a lecturer of School of Materials Engineering for his relentlessly guidance, supports, suggestions, and helps my efforts to learn as much as possible in this research. His methodical and analytical approach toward problem solving and defining reason to evidence has been inspiring to me and developing my skill in the world of engineering.

To the lecturers and staffs who had educated to me and student, Thank you for your guidance, I would like to express my gratitude towards my lecturers and staffs. Specially, Dr. Ir. Salmah Husseinsyah, Dr. Rozhanty and laboratory technician of School of Materials Engineering for their helped, cooperation and sharing ideas in order to complete this research. An extended appreciation is also expressed to University Malaysia Perlis for giving facility and resource in completing this research. Special thanks to my loving family who is always there to support and remind me to always hold my head up in times of difficulty. Also, thanks to my friends and my classmates who are always helped and stayed with me in the all times. Finally, I would like to thank everyone who has been involved in this project or indirectly for their help and contribution. Thank you very much!

THANKS TO ALMIGHTY ALLAH	ill'
LUKMAN HAJIDA-OH	COPY
UNIVERSITI MALAYSIA PERLIS	
THANKS TO ALMIGHTY ALLAH LUKMAN HAJIDA-OH UNIVERSITI MALAYSIA PERLIS Officiant	
othisitem	

UNIVERSITY MALAYSIA PERLIS

DECLARATION OF THESIS

Authors full name : LUKMAN HAJIDA-OH

Date of birth : 1/11/1987

Title : THE MECHANICAL PROPERTIES AND THERMAL PROPERTIES OF PMMA/EVA/KENAF SHORT FIBER COMPOSITES PREPARED BY TWIN SCREW EXTRUDER AND INJECTION MOLDING

Academic Session : 2012/2013

I hereby declare that the thesis becomes the property of University Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as:

placed at the library of UniMAP	. This thesis is classified as:
_	
CONFIDENTIAL	(contains confidential information on under Official Secret Act 1972)*
	alles .
RESTRICTED	(contains restricted information as specified by the organization where
	research was done)*
✓ OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy
	or on-line open access (full text)
4	o ^s
	the UniMAP to reproduce this thesis in whole or in part for the purpose e only (except during a period ofyears, if so requested above).
BU	Certified by:
× MIS	
······	
SIGNATURE	SIGNATURE OF SUPERVISOR
C 813748	DR. DU NGOC UY LAN
(PASSPORT NO.)	NAME OF SUPERVISOR
Date:	Date:

SIFAT-SIFAT MEKANIKAL DAN TERMA KOMPOSIT

PMMA/EVA/GENTIAN KENAF PENDEK YANG DISEDIAKAN DENGAN MENGGUNAKAN PENYEMPRIT SKRU BERKEMBAR DAN PENGACUAN SUNTIKAN

ABSTRAK

Komposit poli (metil metakrilat) (PMMA) dengan perubahan gentian kenaf ringkas (KSF) telah disediakan dengan menggunakan penyemprit skru berkembar dan pengacuan suntikan. Kesan etilena vinil asetat (EVA) keatas keliatan komposit PMMA/KSF telah juga dikaji. Kesan suhu suntikan di zon pemplastikan telah kaji dengan menggunakan sampel PMMA/EVA (70/30) terisi 10% berat KSF. Didapati bahawa sifat tegangan komposit pada 230°C adalah lebih tinggi daripada 220°C seperti kekuatan tegangan, modulus Young, pemanjangan pada takat putus dan keliatan tegangan. Suhu 230°C telah dipilih untuk sampel suntikan kandungan KSF dan kandungan EVA. Kandungan KSF telah diubah dari 0, 5, 10 dan 15% terisi PMMA/EVA (70/30). Keputusan sifat mekanikal menunjukkan bahawa tenaga impak, kekuatan tegangan, pemanjangan pada takat putus dan keliatan tegangan menurun dengan kandungan KSF. Sebaliknya, modulus Young komposit telah meningkat dengan penambahan KSF. Tambahan KSF juga mendorong kenaikan dalam modulus penyimpanan, modulus kehilangan komposit PMMA/EVA/KSF. Untuk kajian nisbah PMMA/EVA (100/0, 80/20 dan 70/30), keliatan komposit PMMA/EVA/KSF diperolehi daripada ujian hentaman menunjukkan bahawa PMMA/EVA nisbah 80/20 lebih baik daripada 70/30 dan100/0. Begitu juga dengan keliatan tegangan. EVA bukan sahaja mempunyai kesan keliatan tetapi memberi kesan pemplastikan yang menyebabkan modulus Young, penyimpanan dan modulus kehilangan PMMA/EVA/KSF komposit lebih rendah daripada komposit PMMA (tanpa EVA). Kehadiran EVA juga merubah puncak δ tan PMMA/EVA/KSF kepada suhu yang lebih tinggi. Kesan punca berasal dari suhu lebur EVA sekitar 120 °C yang diperolehi daripada keputusan DSC. Kehadiran kandungan KSF dan EVA juga meningkatkan kestabilan terma komposit PMMA/EVA/KSF yang diperolehi daripada keputusan TGA.

THE MECHANICAL PROPERTIES AND THERMAL PROPERTIES OF PMMA/EVA/KENAF SHORT FIBER COMPOSITES PREPARED BY TWIN SCREW EXTRUDER AND INJECTION MOLDING

ABSTRACT

Poly (methyl methacrylate) (PMMA) composites with variation of kenaf short fiber (KSF) was prepared by using twin screw extruder and injection molding. The effect of ethylene vinyl acetate (EVA) on the toughness of PMMA/KSF composites was also investigated. The effect of injection temperature at plasticizing zone was investigated using the sample of PMMA/EVA (70/30) filled 10% weight KSF. It was found that tensile properties of composites at 230 °C were higher than those at 220 °C such as tensile strength, Young's modulus, elongation at break and tensile toughness. The temperature of 230 °C was selected for injection sample of KSF content and EVA content. The KSF content was varied from 0, 5, 10 and 15% filled PMMA/EVA (70/30). The mechanical properties results showed that impact energy, tensile strength, elongation at break and tensile toughness decreased with KSF content. In contrast, Young's modulus of composites was increased with KSF loading. The addition of KSF also induces increment in the storage modulus, loss modulus of PMMA/EVA/KSF composites. For investigation of PMMA/EVA ratio (100/0, 80/20 and 70/30), the toughness of PMMA/EVA/KSF composites obtained from impact test showed that PMMA/EVA ratio of 80/20 better than 70/30 and 100/0. This was also in agreement with tensile toughness. EVA exhibited not only toughening effect but also plasticizing effect, which causes Young's modulus, storage and loss modulus of PMMA/EVA/KSF composites lower than those of PMMA composites (without EVA). The presence of EVA also shifted the peak of tan δ of PMMA/EVA/KSF to higher temperature. The root effect originated from melting temperature of EVA around 120 °C which obtained from DSC results. The presence of KSF and EVA content also enhanced thermal stability of PMMA/EVA/KSF composites which obtained from TGA results.

G

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	i
APPROVAL AND DECLARATION	iii
ABSTRAK	iv iv
ABSTRACT	v
APPROVAL AND DECLARATION ABSTRAK ABSTRACT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATION	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF SYMBOLS AND ABBREVIATION	xiv
orn is ple	
CHAPTER 1: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	3
1.3 Research Objectives	4
1.4 Scope of study	5
CHAPTER 2: LITERATURE REVIEW	6
2.1 Thermoplastics Matrix Composites	6
2.2 Short Fibre Composites	8

2.2.1 General Conception	8		
2.2.2 Mechanical Properties of Short Fibre Composites	9		
2.3 Kenaf Natural Fibre in Composites	11		
2.3.1 Kenaf Natural Fiber Composition	11		
2.3.2 Kenaf Fiber Reinforces Polymer Composites	13		
2.4 Poly (methyl methacrylate) (PMMA)	14		
2.5 Ethylene Vinyl Acetate (EVA)	17		
2.6 PMMA/EVA Blends	19		
2.7 Toughness of PMMA composites			
2.8 Twin Screw Extruder Process	22		
2.9 Injection Molding Process	25		
 2.5 Ethylene Vinyl Acetate (EVA) 2.6 PMMA/EVA Blends 2.7 Toughness of PMMA composites 2.8 Twin Screw Extruder Process 2.9 Injection Molding Process 25 CHAPTER 3: METHODOLOGY 3.1 Materials 3.1.1 Poly (methyl methacrylate) 			
3.1 Materials	29		
3.1.1 Poly (methyl methacrylate)	29		
3.1.2 Ethylene-vinyl-acetate	30		
3.1.3 Kenaf short fiber	30		
3.2 Procedures	31		
3.2.1 Sample preparation	31		
3.2.2 Composite blending by twin screw extruder	31		
3.2.3 Producing of PMMA/EVA/kenaf short fiber composite	32		
by using injection molding machine			
3.2.4 Effect of injection temperature	32		
3.2.5 Effect of EVA content	33		
3.2.6 Effect of kenaf short fiber content	33		
3.2.7 Testing and Characterization	34		

3.2.7.1 Tensile test	34
3.2.7.2 Impact test	35
3.2.7.3 Dynamic mechanical analysis test (DMA)	35
3.2.7.4 Differential scanning calorimeter test (DSC)	35
3.2.7.5 Thermogravimetric analysis test (TGA)	36
3.2.7.6 Scanning electron microscopes test (SEM)	36
3.2.8 Flow Chart	37
CHAPTER 4: RESULTS AND DISCUSSION	38
4.1 The effect of injection temperature on the PMMA/EVA/kenaf short	38
fiber composites	
4.1.1 Mechanical properties	38
4.2 The effect of kenaf short fiber content on the PMMA/EVA/kenaf	41
short fiber composites	
4.2.1 Mechanical properties	41
4.2.1.1 Tensile properties	41
i Tensile strength and elongation at break	41
i Tensile strength and elongation at break ii Young's modulus and tensile toughness iii Fracture observation by using SEM	43
iii Fracture observation by using SEM	45
4.2.1.2 Impact properties	48
4.2.2 Dynamic mechanical analysis (DMA)	50
4.3 The effect of EVA content on the PMMA/EVA/kenaf short	55
Fiber composites	
4.3.1 Mechanical properties	55
4.3.1.1 Tensile properties	55

i Tensile strength and elongation at break	55
ii Young's modulus and tensile toughness	57
iii Fracture Observation by using SEM	59
4.3.1.2 Impact properties	60
4.3.1.3 Fracture Observation by using SEM	62
4.3.2 Thermal properties	65
4.3.2.1 Differential scanning calorimeter (DSC)	65
4.3.3 Dynamic mechanical analysis (DMA)	67
4.4 The effect of kenaf short fiber content and EVA content on	73
Thermogravimetric analysis (TGA) properties of PMMA/EVA/kenaf	
short fiber composites.	
4.4.1 The effect of kenaf short fiber content on TGA properties	73
4.4.2 The effect on EVA content on TGA properties	76
4.4.3 Combination between the effect of kenaf short fiber and	79
EVA content on the TGA properties	
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	83
5.1 Conclusion	83
5.2 Recommendations	85
DEFEDENCES	0.5
REFERENCES	86
APPENDIX	99

LIST OF TABLES

Tał	Table No:	
3.1	The properties of PMMA	29
3.2	The properties of EVA	30
3.3	The formulation and nomination of PMMA/EVA/kenaf	34
	short fiber composites in the experiment	
4.1	The temperature at loss modulus peak and tan δ peak	54
	from DMA analysis	
4.2	DSC results of PMMA/EVA/kenaf short fiber composites	66
4.3	The temperature at loss modulus peak and tan δ peak	70
	from DMA analysis	
4.4	The TGA data of kenaf short fiber and EVA content at	82
	each temperature range	
	. KOL	
	in the second	

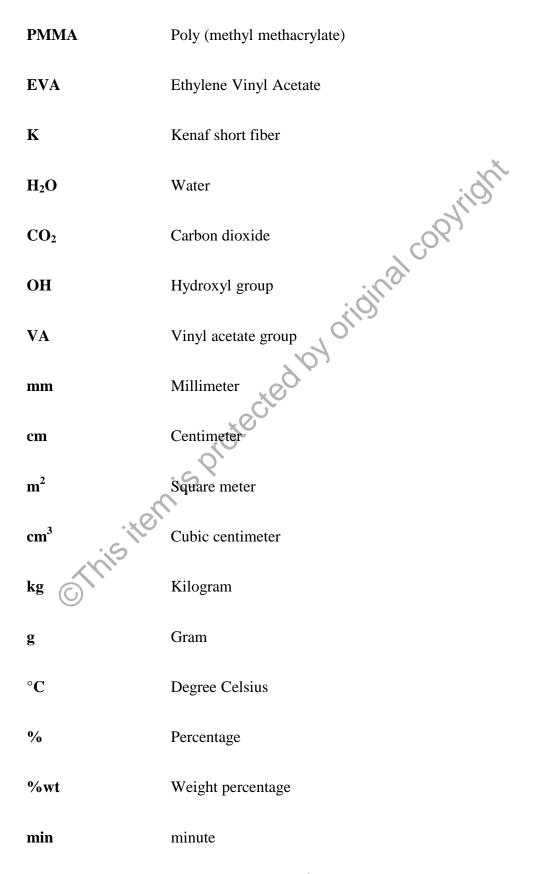

LIST OF FIGURES

Fig	Figure No:	
2.1	Classification of natural fibers	12
2.2	Chemical structure of cellulose	13
2.3	Chemical structure of poly methyl-methacrylate (PMMA)	15
2.4	Chemical structure of poly methyl-methacrylate (PMMA) Synthesis of EVA The basic extruder machine Injection molding machine Flow chart of the experiment	17
2.5	The basic extruder machine	24
2.6	Injection molding machine	27
3.1	Flow chart of the experiment	37
4.1	The effect of different injection temperature on the tensile	39
4.2	and the elongation at break of PMMA/EVA/kenaf short fiber composites The effect of injection temperature on the Young's modulus and the tensile toughness of PMMA/EVA/kenaf short fiber composites	39
4.3	Phase behavior of PMMA and EVA of cooling period in injection mold of PMMA/EVA/kenaf short fiber samples	41
4.4	The effect of kenaf short fiber content on the tensile strength and elongation at break	42

4.5	The effect of kenaf short fiber content on the Young's modulus	44
	and the tensile toughness	
4.6	SEM of tensile fracture for PMMA/EVA/kenaf short fiber	47
	composites	
4.7	The effect of kenaf short fiber content on the impact strength	49
4.8	The effect of kenaf short fiber content on the storage modulus of	51
	PMMA/EVA composites	
4.9	The effect of kenaf short fiber content on the loss modulus of	52
	PMMA/EVA composites	
4.10	The effect of kenaf short fiber content on the tan δ of PMMA/	53
	EVA composites	
4.11	The effect of EVA content on the tensile strength and	56
	elongation at break	
4.12	The effect of EVA content on the Young's modulus and	58
	the tensile toughness	
4.13	The effect of EVA content on the tensile fracture deformation	60
4.14	The effect of EVA content on the impact strength	61
	The effect of E VIX content on the impact strength	01
4.15	SEM of Impact fracture for PMMA/EVA/kenaf short fiber	64
	composites	
4.16	DSC curves of ME0K, ME20K and ME30K	65
4.17	The effect of EVA content on the storage modulus of PMMA/	68
	EVA composites	

4.18	Effect of EVA content on the loss modulus of PMMA/EVA composites	71
4.19	Effect of EVA content on the tan δ of PMMA/EVA composites	72
4.20	TGA curves of ME30K0, ME30K10 and ME30K15	74
4.21	DTGA curves of ME30K0, ME30K10 and ME30K15	76
4.22	TGA curves of ME0K, ME20K and ME30K	77
4.23	DTGA curves of ME0K, ME20K and ME30K	78
(TGA curves of ME30K0, ME30K10 and ME30K15 TGA curves of ME0K, ME20K and ME30K DTGA curves of ME0K, ME20K and ME30K DTGA curves of ME0K, ME20K and ME30K Officianal conviction	

LIST OF SYMBOLS AND ABBREVIATION

S	Second
rpm	Rotation per minute
Т	Temperature
T _m	Melting temperature
T _g	Glass transition temperature
ASTM	American society for testing and materials
UTM	Universal testing machine
Hz	Hertz
MPa	Megapascal
GPa	Gigapascal
J	American society for testing and materials Universal testing machine Hertz Megapascal Gigapascal Joule
kJ	Kilojoule
E' iter	Storage modulus
E'' 6	Loss modulus
ΔΗ	Heat of melting temperature
DMA	Dynamic mechanical analysis
DSC	Differential scanning calorimeter
TGA	Thermogravimetric analysis
SEM	Scanning electron microscope

ME0KPMMA/EVA (100/0) with 10% kenaf short fiber compositesME20KPMMA/EVA (80/20) with 10% kenaf short fiber compositesME30KPMMA/EVA (70/30) with 10% kenaf short fiber compositesME30K0PMMA/EVA (70/30) with 0% kenaf short fiber compositesME30K5PMMA/EVA (70/30) with 5% kenaf short fiber compositesME30K10PMMA/EVA (70/30) with 10% kenaf short fiber compositesME30K15PMMA/EVA (70/30) with 10% kenaf short fiber composites

.... 10% kenaf short fit

CHAPTER 1

INTRODUCTION

1.1 Research Background

The products are an increasing need to investigate more environmentally friendly, sustainable materials to replace the existing glass fibre and carbon fibre reinforced materials. Therefore, attention has recently shifted to the fabrication and properties of natural fibre reinforced materials (Anuar, et al., 2011).

Natural fibers that have been evaluated as replacements for glass and other nonrecyclable fibers include flax, hemp, kenaf and sisal. These fibers are abundant, cheap, renewable, and easily recycled. Other advantages include low density, high toughness, comparable specific strength properties, reduction in tool wear, ease of separation, decreased energy of fabrication, and CO_2 neutrality (Mohanty, et al., 2000).

The automotive and aerospace industries have both demonstrated an interest in using more natural fibre reinforced composites. This has led to predictions that in the near future plastics and polymer composites will comprise approximately 15% of total automobile weight (Mohanty, et al., 2002). The plastics and polymers which use in composites are many types of them such as PMMA and EVA.

Kenaf is one of the natural (plant) fibers used as reinforcement in Polymer Matrix Composites (PMCs). Kenaf (Hibiscus cannabinus, L. family Malvacea) has been found to be an important source of fibre for composites, and other industrial applications (Karnani, et al., 1997). Kenaf is well known as a cellulosic source with both economic and ecological advantages; in 3 month (after sowing the seeds), it is able to grow under a wide range of weather conditions, to a height of more than 3 m and a base diameter of 3–5 cm (Aziz, et al., 2005). This statement is supported by previous studies, which mentions that growing speed may reach 10 cm/day under optimum ambient conditions (Nishino, et al., 2004). From the viewpoint of energy consumption, it takes 15 MJ of energy to produce 1 kg of kenaf; whereas it takes 54 MJ to produce 1 kg of glass fibre (Nishino, et al., 2004).

Kenaf exhibits low density, non-abrasiveness during processing, high specific mechanical properties and biodegradability. It can be used as a domestic supply of cordage fibre in manufacture of rope, twine carpet backing and burlap. In automotive industry works as a substitute for fiber glass or other synthetic fibers, and can be found in automobile dashboards, carpet padding and corrugated medium. The main processes by which the fibre and matrix can turn into final product are injection molding and extrusion (Mohanty, et al., 2002).

Poly (methyl methacrylate) (PMMA) is one of the well know brittle materials. The common method for promoting the toughness of PMMA is blending with the rubber modifier. Ethylene-vinyl-acetate (EVA) elastomer is a suitable material to improve the toughness of PMMA compare to other materials. That is due to PMMA and EVA can be mixable based on chemical structure. Also, the refractive index of EVA is very close to those of the PMMA.

The injection molding is one of the most attractive polymer processes in industry. It is especially used to produce a wide variety of complex geometry articles (e.g. precision gear wheel, hampers, etc.) in a single operation and low wear of the processing equipment. High production rate, short cycle times and low percentage of scrap are also accounting the advantages that make. This process is very attractive from engineering and economical point of view. However, molding complicated parts, multigated mold cavities and cavities containing inserts may generate serious difficulties in terms of mold filling and final production especially.

1.2 Problems statements

Natural fibre composites normally can be thermal degraded during processing by using injection temperature. Injection temperature in the injection moulding can lead to thermal damage to the natural fibre composites. To overcome the thermal degradation problem, so injection temperature during injection molding process was investigated.

Poly (methyl methacrylate) (PMMA) is one of the well know brittle materials. In order to enhanced the physical and mechanical properties of PMMA. The most common method for improving the toughness of PMMA is blending with the rubber modifier. Moreover, the most common compounding method is melt mixing by internal mixer. So, less of study is using extruder and injection molding. Therefore, the effect of EVA content on the toughness of PMMA by using extruder and injection molding was studied.

Natural short fiber using extruder and injection molding, it was difficult to process. Therefore, the effect of kenaf short fibre on the mechanical properties of PMMA/EVA/kenaf short fibre composites by using twin screw extruder and injection ioinal copyriol molding process was studied.

1.3 **Research Objectives**

These objectives were carried out in this study as below:

- То study effect injection temperature on tensile properties of PMMA/EVA/kenaf short fibre composite (PMMA/EVA ratio: 70/30 and 10% of kenaf short fibre).
- To study the effect of EVA content on the mechanical, toughness, thermal properties and dynamic mechanical analysis of PMMA/EVA/kenaf short fibre composites (PMMA/EVA ratio: 100/0, 80/20, 70/30 and 10% of kenaf short fiber).
- To study the effect of kenaf short fibre content on the mechanical, toughness, thermal properties and dynamic mechanical analysis of PMMA/EVA/kenaf short fibre composites (0, 5, 10 and 15% of kenaf short fibre and PMMA/EVA ratio: 70/30).

1.4 Scope of study

The influence of injection temperature on mechanical properties (tensile test) of PMMA/EVA/kenaf short fibre composites by using injection molding was investigated. Besides that, the effect of EVA on mechanical properties (tensile test, impact test and fracture observation), thermal properties (DSC test, TGA test) and dynamic mechanical analysis of PMMA also important to carried out at different ratio of PMMA/EVA. At last, the effect of kenaf short fibre on the mechanical properties (tensile test, impact test and fracture observation), thermal properties (TGA test) and dynamic mechanical analysis of PMMA/EVA/kenaf short fibre composites was studied.

... suort fibre composites w officients the protected by the strength of the s

CHAPTER 2

LITEARATURE REVIEW

2.1 Thermoplastics Matrix Composites

Composites are considered as a standard option for structural applications when high performances are necessary, and among the large variety of composites certainly polymeric matrix composites are the most used, in particular thermosetting matrix composites. Their use, initially in aeronautics applications, is now covering all types of engineering sectors, showing a great choice of possibilities for peculiar fabrication technologies, as well as for mechanical, thermal, chemical properties (Abdulla, 2011).

After the fast developments of new types of fibres with extremely high properties that took place in the last decades of the last century, the commercial availability of thermoplastic matrix composites (TPMC) represents an important recent innovation in the field of composites. The success of such a type of composites is due to different reasons, interesting from the side of fabrication technologies, from the point of view of eco-sustainability of the entire process, and from the side of final performances (Abdulla, 2011).