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REKA BENTUK DAN PEMBANGUNAN RANGKAIAN NEURAL 

PERTUDUHAN UNTUK SISTEM TEKANAN CECAIR PADA BERTETULANG 

GENTIAN KACA EPOKSI (GRE) PAIP KOMPOSIT 

ABSTRAK 

Dengan pertumbuhan pesat sains dan teknologi, paip komposit gentian kaca epoksi 

(GRE) paip telah menjadi sebahagian daripada elemen kejuruteraan yang penting dalam 

bidang kejuruteraan. Oleh itu, program pemantauan telah memainkan peranan penting 

dalam memastikan prestasi GRE pipe telah mencapai kualiti yang tertentu untuk 

digunakan. Berdasarkan ujian kelayakan ISO 14692, proses pengujian memerlukan 

jangka masa dan kos yang sangat banyak bagi memastikan kualiti komposit yang baru. 

Dengan bantuan daripada pemodelan matematik, prestasi paip komposit boleh 

diramalkan untuk mengurangkan ralat semasa mereka bentuk paip. Dengan itu, 

penyelidikan ini adalah bertujuan untuk memodelkan prestasi paip komposit GRE dan 

mengenalpasti titik kegagalan helaian pertama paip. Pertama sekali, model rangkaian 

saraf buatan (ANN) telah dibangunkan untuk meramalkan permulaan kegagalan paip 

komposit yang diperkuat oleh serat kaca. Pengembangan model ANN menggunakan data 

input yang merupakan modulus keanjalan (paksi), modulus keanjalan (gelung), pecahan 

isipadu, diameter, ketebalan, sudut penggulungan paip, nisbah ujian dan tekanan dan data 

output indikator kegagalan helaian pertama data eksperimen dari penyelidikan terdahulu. 

Data yang diperoleh kemudian menjalani proses “smoothing” dan klasifikasi untuk 

meningkatkan ketepatan model yang dibangunkan. Dalam proses “smoothing”, data 

ditapis menggunakan algoritma pelicinan untuk menghapuskan data bunyi yang tidak 

perlu mengikut proses klasifikasi yang dikategorikan, diiktiraf dan dibezakan data dari 

populasi yang diketahui. Selepas pra-proses, data akan digunakan untuk proses latihan 

model. Dalam proses itu, parameter latihan rangkaian neural perlu ditetapkan. Parameter 

ini akan menentukan bilangan neuron dan bilangan lapisan neuron. Dalam perbangunan 

model, ketepatan purata model dikira berdasarkan sepuluh percubaan. Dengan itu, model 

ketepatan tertinggi yang diperolehi akan digunakan untuk meramalkan kegagalan pada 

paip komposit GRE. Rig ujian tekanan mudah alih juga dibangunkan berdasarkan 

protokol ujian monotonik / kitaran yang serupa dengan prosedur yang dijelaskan dalam 

piawaian ASTM D2992. Rig ujian berfungsi sebagai platform untuk mendapatkan data 

eksperimen untuk prosedur pengesahan model. Proses pengesahan pula akan dilakukan 

untuk meningkatkan kebolehpercayaan model ANN yang diperolehi. Proses pengesahan 

model akan dijalankan menggunakan beberapa data dari tempat lain yang tidak termasuk 

dalam data proses latihan. Oleh itu, model yang dibangunkan dijangka meramalkan 

kegagalan pertama di dalam komposit paip dibawah pelbagai nisbah tegangan biaxial. 

Dari hasilnya, struktur model tiga lapisan ANN telah dipilih dimana ketepatannya adalah 

diantara 95%-99.66%. Dari proses pengesahan model, perbandingan eksperimen yang 

berbeza telah dijalankan untuk mengesakan ketepatan paip GRE, ketepatan yang 

diperolehi adalah dalam lingkungan 77%-97%. Untuk ujian pengesahan dengan 

menggunakan ujian pencarian, persetujuan yang baik telah diramalkan dengan variasi 

kurang daripada 30%. Dari semua hasil, ini telah menunjukkan bahawa model ANN 

boleh diperluaskan untuk menghasilkan ramalan yang berguna berkaitan permulaan 
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kegagalan dalam paip komposit di bawah pelbagai keadaan tekanan. Ini boleh digunakan 

sebagai kaedah untuk penarafan rating komposit paip untuk proses pemantauan mengikut 

piawaian ASTM. 
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DESIGN AND DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK 

MODEL FOR LIQUID PRESSURIZED SYSTEM BASED ON GLASS FIBRE 

REINFORCED EPOXY (GRE) COMPOSITE PIPE 

ABSTRACT 

With the rapid growth of science and technology, glass fibre reinforced epoxy (GRE) 

composite pipe has become part of the vital engineering elements in the engineering field. 

Therefore, qualification program plays an important role to ensure that the performance 

of the GRE pipe has achieved a reliable standard with excellent quality. Conventional 

test procedure which refers to ISO 14692 qualification test based on the regression 

analysis requires typically extensive amounts of time and cost to identify the performance 

of the new composite pipe. With the aid of mathematical modelling, the performance of 

the composite pipe can be predicted where this can reduce errors when designing the 

pipe. This research aims to model the performance of the GRE composite pipes and thus, 

identify the pipe’s first ply failure (FPF). First of all, an artificial neural network (ANN) 

model was developed to predict the onset of failure of GRE composite pipes. The ANN 

model was developed using input data namely, modulus of elasticity (axial), modulus of 

elasticity (hoop), volume fraction, diameter, thickness, pipe winding angle, stress ratio 

and pressure and the output data from the first-ply failure indicator of experimental data 

from previous research. The data obtained then underwent the smoothing and 

classification process to improve the accuracy of the model developed. In the smoothing 

process, the data was filtered using a smoothing algorithm to remove the unnecessary 

noise data followed by the classification process which categorised, recognised and 

differentiated the data from the known population. After the pre-processing, the data was 

used for the model training process. In the process, neural network training parameters 

needed to be decided. The parameter decided the number of neurons and the number of 

layers. In the model development, the mean accuracy of the model was calculated based 

on ten trials. By analysis and various trials, the highest accuracy model obtained would 

be used to predict the first-ply failure of the GRE composite pipe. A portable automated 

pressure test rig was also developed based on the monotonic/cyclic test protocol similar 

to the procedure elucidated in ASTM D2992 standard. The test rig served as a platform 

to obtain the experimental data for another model verification procedures. The validation 

process, on the other hand, was conducted to strengthen the reliability of the ANN model 

obtained. The validation process of the model was conducted using some other finding 

which was not included in the training process data. Therefore, the developed model was 

expected to predict the first-ply failure within the pipe composite laminated under various 

biaxial stress ratios. From the result, the three-layer ANN model structure was chosen 

where the means accuracy achieved was within 95%-99.66%. From the model 

verification process, the pure hydrostatic experimental comparison and the five different 

stress ratios test for ±55° GRE pipe accuracy was in the range of 77%-97%. For the 

validation test with experimental findings, a good agreement with the model’s predictions 

was achieved, with less than 30% variation. From the results, it has suggested that the 

ANN model can be extended to yield useful predictions of the onset of failure in 
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composite pipes under a range of stress conditions. This can be utilised as an internal 

means for pipe rating prior to the required standard of the ASTM qualification process. 
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CHAPTER 1 : INTRODUCTION 

1.1 Introduction/Background history 

The composite material has become conventional materials which are intensively 

replacing metallic pipes. Most of the industries especially the petroleum industries are 

demanding for components which have high production rates and stricter occupational 

safety and health administration (OSHA) regulation.  From the last decade, the quality 

and the capabilities of resin, fibre and fabrication equipment and processes allow a lot of 

the metal usage were converted to composites material (Spencer, 1998). Eventually, the 

composite system must offer superior mechanical properties such as high specific 

stiffness, high specific strength, corrosion resistance and fatigue resistance (Hull & Clyne, 

2003). The glass fibre reinforced epoxy (GRE) piping system is often utilised in most of 

the application where the pipe can withstand competitive services, ambient and harsh 

environmental conditions. Due to the above advantages, the demand for the pipe to 

sustain high pressure, impact, rough handling and harsh environmental conditions such 

as corrosion and high temperature, the material was changed to composites as a solution 

to the weight and durability problems to meet the design goals. 

While engineers are turning to the advanced materials to meet the strict 

requirements, the composite material is chosen as a solution. GRE composite is one of 

the most widely used glass reinforced plastics which is capable of meeting a wide variety 

of end product requirements including fluid transport requirement. It has been extensively 

used in marine, building and also automotive industries. GRE composite is also 

customarily designed into pipes to withstand high pressures. Due to their lightweight and 
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thin-walled structure, it provides a secure method of transportation and handling resulting 

to a lower installation cost (Frost, 1999). The corrosion resistance of the pipe properties 

is also one of the issues that leads to the extensive uses of the pipe due to highly corrosive 

fluid transportation (Gibson & Arun, 2016). The increase in the usage of this material has 

forced researchers to test the design limitations in term of its performance as the 

composite pipe is expected to serve for 50 to 100 years of services under the ground or 

sea.  

Due to their long-term lifespan of services, the standard qualification of the GRE 

pipes has to be done despite it being highly expensive and time-consuming to achieve. 

Therefore, numbers of alternative solutions in the different possible tests can be achieved 

to predict the performance of the composite pipes. The tests such as flexural tests, 

ultimate-elastic wall stress (UEWS) tests and interlaminar shear stress (ILSS) tests are a 

few of the typical examples that are used for internal qualification procedures. The 

ultimate elastic wall stress (UEWS) test was first investigated by a Shell researcher in 

1968 (Schwencke, H. F., 1968). However, there have only been limited studies made for 

the UEWS tests in the procedures. The UEWS tests involve typically in the application 

of cyclic pressure of hydrostatic tests at an increasing pressure level.  

Since the standard UEWS tests conducted require a physical pressurised test rig 

to perform, mathematical modelling has also become an alternative solution for an early 

stage prediction to reduce unwanted mistake. Moreover, the mathematical modelling is 

an alternative method which can be used as a simulation tool before any construction of 

the physical test. Examples of Tsai-Wu, Hashin criteria, Chang criteria and Puck criteria 

are some of the mathematical analysis that have been commonly used based on the 
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required researches (Paris, 2001). Hence, derivation of a mathematical model using a 

more advanced method can be relatively new to the composite modelling. 

System identification is a method which uses input and output data of the system 

to construct a mathematical modelling (Deng, 2009). This method has eliminated the 

difficulties of the needs for understanding the fundamental theory for the system. In 

recent years, as a constant development of the system identification technology, various 

methods have emerged to obtain better identification model. Methods like least square 

method, gradient correction methods are some of the methods which are commonly used 

nowadays. There are also some advanced methods in system identification such as neural 

network, fuzzy logic and genetic algorithm. By comparison, a suitable method to 

approach the system can be implemented.  

The improved technology of the computation power has opened the opportunity 

in the research on the advance system identification method. This has become a new 

alternative field to be explored for those who are interested in producing a mathematical 

model. By using the neural network modelling method, a mathematical model can be 

developed. Therefore, a system can be easily predicted by using the mathematical model 

produced. 

This research mainly focuses on the design and development of the mathematical 

model for the GRE composite pipe. The mathematical modelling developed was 

considered to predict the onset of failure if the first-ply failure (FPF) point. and thus, 

produce a biaxial failure envelope compatible with long-term tests in accordance with 

ASTM D2992 (D2992-06, 2006). Therefore, the artificial neural network (ANN) 

 
 

 
 

 
 

 
 

 
©This

 ite
m

 is
 p

ro
te

cte
d 

by
 o

rig
ina

l c
op

yr
igh

t 



4 

 

 

 

modelling method is a suitable method to be used in the research. First, experimental data 

were collected from previous research. The data were then processed as input parameters 

in the ANN training model. Afterwards, the results from the proposed model were 

compared with experimental tests conducted with the results of other research papers to 

analyse the accuracy of this model.  

1.2 Problem statement 

Composite pipe manufacturer must ensure that the pipe delivered is safe and can 

perform well within the requirements of the end users. Normally, the international 

standard ISO 14692 becomes the standard principle and working methods which deals 

with the qualification, system design and installation standard for the GRE piping systems.  

This has guided everyone in the industry to develop the similar understanding of the pipe. 

By using this method, it requires a test rig as well as a prolonged period of an 

experimental procedure to determine the long-term performance of the pipe through a 

short-term test. The main issue of this method is that at every new pipe design, a similar 

test will have to be repeated. This has become a waste in term of cost and time. To 

overcome these issues, failure prediction using the modelling approach is a solution that 

can be implemented as an internal qualification of the new pipe. Therefore, research on 

the development of a better model is essential to provide better suggestion to the 

researchers and manufacturer to select an appropriate design to meet their needs.  

In the construction of the model, accuracy plays an essential role to determine its 

reliability. Most of the model are usually developed based on the micromechanics/energy 

method which involves complex mathematical equations. Those methods need time an 
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in depth understanding of the micromechanical fundamentals which has made the 

modelling difficult and time-consuming. Since the computation power has seen some 

mass improvement in the last decade, neural network modelling techniques have been 

widely engaged in complex engineering problems. Such method enables the model to be 

generated through a collection of the existing qualification data. With the aid of 

computation power, a more complex and user-friendly model can be generated, and this 

may significantly reduce the difficulties of the model development.  

This research aims to develop an engineering tool based on the ANN modelling 

for the manufacturer to identify the FPF point at the design stage. By providing the 

required input parameter, the model will have the ability to predict the behavior and the 

characteristics of the GRE pipes. By using the model, unnecessary pipe testing during the 

qualification processes of a new pipe’s design can be avoided. In this research, details of 

the model developed is discussed in the following details.  

A significant amount of research data on the performance of the GRE pipes will 

be collected at an early stage. After the data collection, the suitable data will be chosen. 

This data will undergo the smoothing process followed by the classification process that 

will be conducted. After the data processing, the data is then used in the construction of 

the model. After the model is constructed, verification and validation processes are used 

to determine the accuracy of the model.  
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1.3 Objective 

The primary objective of this work is to develop an advanced model based on the 

ANN modelling method. The model is expected to be able to predict the FPF of the 

composite pipe as part of internal qualification procedure before conducting the physical 

experimental test. For the research to achieve the objective, the following objectives of 

this research are focused: 

Objective 1: To develop Artificial Neural Network (ANN) based model for the prediction 

of first ply failure (FPF) of glass fibre reinforced epoxy (GRE) composite pipes. 

In the ANN model development, the model is produced based on the input 

parameters. Therefore, the reliability and accuracy of the data are taken into account in 

the early stage to ensure the accuracy of the model produced. In this stage, data is pre-

processed where most of the noise is removed where a clean data is ready to be used in 

the model training stages. 

Objective 2: To conduct the pressure test and thus, determine the first ply failure (FPF) 

point of the GRE composite pipes experimentally. 

A pressurized test rig is developed where various experimental works are 

conducted to determine the FPF point experimentally. The main purpose of the 

experimental result is to compare with the constructed ANN model. 
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Objective 3: To verify and validate the accuracy of the ANN model developed for FPF 

predictions. 

Verification and validation are vital steps to ensure that the chosen model that 

represents the GRE composite pipe is the best ANN model. The model will undergo some 

verification tests from the result of the test rig and the validation tests from some other 

results of previous researchers. 

1.4 Scope of research 

The scope of this research is confined to the design and the development of a 

model-based identifier for the determination of the performance of the composite pipes. 

Therefore, the discussion in this thesis is focused on the modelling of the GRE composite 

pipe where its performance is identified by means of ANN modelling. 

 It is to be highlighted that the test protocol and the classifications of the model 

are conducted on GRE for a limited range configuration composite pipe. Thus, the FPF 

determination reports only works for glass fibre/epoxy which has the configurations of; 

volume fraction 0.5-0.66, winding angles of 45°-63°, the diameter of 100-200 mm, and 

thickness of 3-6 mm where the parameter chosen based on the standardize configuration 

of the composite pipe which generally found in the field. The model predicts the FPF 

within the five stress ratios range from pure axial (0H:1A) to pure hoop (1H:0A). Thus, 

it is paramount to state that the developed model suits only for a specific reinforcement 

material and parameter configurations. Different materials and configurations, on the 
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