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Model Penambahbaikan Kesan Hentaman Terhadap Jasad Viskoplastik 

ABSTRAK 

 

Hentaman antara dua jasad adalah fenomena kompleks yang sering berlaku dalam 

pelbagai bidang seperti sukan, automotif, geologi dan sebagainya. Sehingga kini, tugas 

penambahbaikan model bagi kesan hentaman lebih mencabar kerana teori konstitutif 

yang sedia ada digunakan dalam mekanik hentaman adalah kurang tepat. Kaedah 

dedenyut dan momentum telah digunakan sebagai prinsip am untuk menyelesaikan 

masalah dinamik sebelum ini. Kemudian, model kesan hentaman telah digabungkan 

dengan menggunakan parameter yang diwakili oleh elemen spring dan/atau daspot di titik 

sentuhan yang kecil dalam kawasan sentuhan. Melalui kaedah ini, mekanik sentuhan yang 

berlaku semasa hentaman dalam tempoh yang singkat dapat dikira. Model hentaman ini 

mengambil kira sifat konstitutif bahan seperti elastik, viskoelastik, elastoplastik atau 

viskoplastik seperti yang terkandung dalam undang-undang sentuhan pada kawasan 

termampat yang kecil. Pada kelajuan hentaman yang sangat rendah, model elastik 

berdasarkan teori sentuhan Hertz dan model viskoelastik Hunt & Crossley dapat 

menentukan tindak balas hentaman dengan tepat. Namun begitu, pada halaju hentaman 

yang sederhana atau tinggi, sebahagian besar daripada tenaga kinetik awal telah hilang 

akibat canggaan plastik, penyebaran gelombang tekanan, bunyi, haba dan kesan-kesan 

lain. Model elastoplastik boleh digunakan untuk meramal canggaan plastik pada jasad 

yang dihentam tetapi kesan penyebaran gelombang tekanan tidak dipertimbangkan dalam 

model ini. Permasalahan ini telah ditangani dengan menggunakan model viskoplastik 

yang dapat meramalkan tindak balas hentaman dengan mengambil kira canggaan elastik 

dan plastik serta mengambil kira tenaga yang hilang akibat penyebaran gelombang 

tekanan. Oleh yang demikian, kajian ini mencadangkan dua model viskoplastik untuk 

hentaman yang dibangunkan melalui penambahbaikan model viskoplastik terdahulu iaitu 

Model Yigit dan Model Ismail & Stronge. Model yang dicadangkan ini merupakan 

kaedah alternatif untuk meramal tindak balas hentaman dengan menggunakan elemen 

spring secara linear atau menggabungkan elemen spring secara linear dan tidak linear 

semasa fasa rehat. Selain itu, tindak balas hentaman untuk beberapa jenis bola telah 

diukur melalui eksperimen ujian hentaman dan analisis unsur terhingga. Dalam 

eksperimen, pelbagai ujian yang telah dilaksanakan bertujuan untuk memastikan 

ketepatan pengiraan daya dan halaju bagi hentaman pelbagai jenis bola sukan. Selain itu, 

model unsur terhingga yang tepat telah dibangunkan dan telah disahkan dengan model 

unsur terhingga sebelumnya. Dapatan kajian menunjukkan tindak balas hentaman yang 

diperoleh daripada model-model yang dicadangkan juga telah disahkan melalui 

eksperimen dan analisis unsur terhingga. Model yang dicadangkan ini dapat menganggar 

nilai daya maksimum dengan ralat kurang daripada 20 % dan nilai masa pelanggaran 

dengan ralat kurang daripada 11 %. Model yang dicadangkan ini juga berjaya 

meningkatkan ketepatan tindak balas hentaman iaitu hentaman normal antara dua 

komponen yang padat terutamanya untuk kes hentaman elastik. Model yang dicadangkan 

ini menghasilkan kehilangan tenaga yang paling kecil berbanding model-model 

terdahulu. Maka, pengiraan daya dan canggaan dapat dikira dengan tepat berbanding 

model-model viskoplastik yang lain. Selain itu, model unsur terhingga juga telah 

digunakan untuk mendapatkan tindak balas hentaman bagi bahan, saiz dan halaju 

hentaman jasad yang berbeza. Secara keseluruhannya, model viskoplastik untuk 

hentaman yang baru telah dibangunkan dan tindak balas hentaman antara dua komponen 

telah dikemukakan.  
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xix 

Improved Model for Impact of Viscoplastic Bodies 

ABSTRACT 

 

Impact between two bodies is a complex phenomenon commonly occurs in many areas 

such as sports, automotive, geology and many more. Until now, modeling an impact is 

still a challenging task due to inherent imprecision of constitutive laws for the impact 

mechanics. Previously, impulse-momentum method was used as general principle to 

solve this dynamic problem. Then, impact is modeled by employing a lumped-parameter, 

which is represented by the spring and/or dashpot elements as a compliance at a small 

contact region around the point of contact. Through this method, the mechanics of contact 

during a short interval of impact event can be calculated. Formulation of the model using 

elastic, viscoelastic, elastoplastic or viscoplastic constitutive material behavior is 

employed as a contact law for the compliance at the small deforming region. At a very 

low impact velocity, an elastic model based on Hertz contact theory and the viscoelastic 

Hunt & Crossley model have accurately predicted impact responses. However, at higher 

impact velocities, a significant part of the initial kinetic energy is dissipated due to plastic 

deformation, stress wave propagation, sound, heat and other effects. An elastoplastic 

impact model can be used to predict the elastic-plastic deformation of the impacted 

bodies, however the effect of stress wave propagation is not considered in this model. 

This problem has been addressed by adopting a viscoplastic model that can predict the 

impact response which encompasses both elastic and plastic deformation and also 

considers the energy dissipated due to wave propagation. This study proposes two 

viscoplastic impact models that were developed from modification of previous 

viscoplastic models; Yigit and Ismail & Stronge models. The proposed model provides 

an alternative method to predict the impact responses by employing a linear spring 

element or combining a linear and nonlinear spring element in restitution phase of the 

compliance. The impact responses for several types of balls have been also studied by 

drop test experiments and finite element analysis. In experiment, various tests have been 

conducted to ensure accurate measurements of force and velocity for drops of different 

sports balls. On the other hand, an accurate finite element model (FE model) was 

developed and it was validated with previous FE model. As a result, the impact responses 

obtained from the proposed models have been validated with both experiment and FE 

analysis. In general, the proposed models can predict the maximum force and contact time 

with percentage error of less than 20 % and 11 % respectively. The proposed model was 

successfully improved the accuracy of impact response prediction for normal impact 

between two compact bodies. For the case of elastic impact, the proposed model gives 

the smallest energy loss of any of these previous models. Thus, it provides good 

estimation of contact forces and deformations, compared to the other viscoplastic models. 

Besides that, the impact responses for impact of different materials, sizes and impact 

velocities of the body have been obtained from the FE analysis. In overall, new 

developments for viscoplastic impact model and impact responses for colliding bodies 

were presented. 
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1.CHAPTER 1:     INTRODUCTION 

1.1 Background of study 

Impact is a complicated phenomenon that occurs when two or more bodies collide 

at a short time period. During impact, the bodies experience a high force level at very 

brief duration, while energy is rapidly dissipated and high acceleration and deceleration 

occurred (Gilardi & Sharf, 2002). The simplest impact application can be shown by 

human’s daily routine, such as knocking a door, drop rubbish into a dustbin and many 

more. Moreover, impact frequently happened in sports and engineering application, from 

hitting a ball in a game until crashworthiness of automotive application. 

Impulse-momentum method is a conventional method that can be used to measure 

the impact responses at the end of an impact event. However, this method has several 

drawbacks, and the most significant is this method unable to predict the impact responses 

during impact (Gharib & Hurmuzlu, 2012). To overcome this problem, numerous impact 

models have been introduced by previous researchers (Brake, 2015; Li, Quan, Tang, Li, 

& Deng, 2017; Thornton, Cummins, & Cleary, 2017). In general, elastic, viscoelastic, 

elastoplastic and viscoplastic constitutive material behaviors are employed as contact 

laws in order to form the impact models. Through impact model, the impact responses of 

the contact bodies during and after collision can be calculated based on their initial 

parameters. For example, the results of force, deformation, energy loss, impact duration 

and velocity of the impacted bodies can be measured at any time during impact.   
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Impact models are widely used to solve the problems in sports engineering (Cross, 

2014; Goodwill & Haake, 2001), geology (Ashayer, 2007; Imre, Räbsamen, & 

Springman, 2008), coal gasification industry (Gibson, Gopalan, Pisupati, & Shadle, 

2013), automotive (Batista, 2006), robotic (Vasilopoulos, Paraskevas, & Papadopoulos, 

2014) and many more. For example, Figure 1.1 shows example of impact applications 

where impact models are always utilized in order to obtain the impact responses. 

Previously, extensive studies have been reported on development and modification of the 

impact models. However, these impact models have their own limitation and the solution 

in impact models are not usually straightforward. To address this concern, many 

researchers are still putting their efforts to develop and modify the impact models in order 

to improve the current impact models (Argatov, Kachanov, & Mishuris, 2017; 

Christoforou & Yigit, 2016; Thornton, Cummins, & Cleary, 2017; Yu & Tafti, 2016; 

Zhang et al., 2016). 

 

 

 

 

 

 
 

 

 

  

(a) (b) 

Figure 1.1: Example of impact phenomena where impact models are widely utilized: 

(a) impact between a golf ball and club head and (b) impact in multibody system 

(Dave, 2017; Khulief, 2013). 
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In general, the present study proposes two modified impact models based on 

viscoplastic constitutive behavior for normal impact between two bodies. The proposed 

models are compared with previous impact models, experimental and finite element 

results throughout this thesis. 

1.2 Problem statements 

According to Brogliato (2016), there are four types of initial impact velocities. 

Very low and low impact velocities occurred within 0-1 m/s and 1-10 m/s of initial impact 

velocities, respectively. In addition, high and hyper impact velocities occurred within 10-

1000 m/s and 1000-10000 m/s of initial impact velocities, respectively. 

In cases where impacts are elastic in nature (i.e. at very low impact velocity and 

no plastic deformation), an elastic model based on Hertz contact theory and the 

viscoelastic Hunt & Crossley model have accurately predicted the impact response 

(Hertz, 1896; Hunt & Crossley, 1975). However, these models are not adequate for most 

impacts in practice (at higher impact velocities), as a significant part of initial kinetic 

energy is dissipated due to plastic deformation, wave propagation, and other effects. 

Therefore, elastoplastic impact models have been developed to account for energy 

dissipation during impact in both elastic and plastic deformation. However, the effect of 

stress wave propagation is not considered in this model. 

These problems have been addressed by adopting a viscoplastic impact model that 

can predict the impact response which encompasses both elastic and plastic deformation 

and also considers the energy dissipated due to wave propagation. Currently, the available 
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viscoplastic model is only valid for low and high impact velocities (Yigit, Christoforou, 

& Majeed, 2011). Yet, this impact model is not suitable for very low impact velocity as 

the result of force-deformation relation is inaccurately predicted in this case. Besides that, 

the works to improve the viscoplastic impact model are still less reported in the previous 

studies. In general, the research problems can be summarized as follows. 

i. Although there are numerous impact models developed in literatures, the choice 

of an adequate impact model for a certain problem is still an important issue to be 

considered. 

ii. The development of impact models for viscoplastic bodies are still limited in the 

previous studies. 

iii. The available viscoplastic impact models unable to predict accurate impact 

responses for the case of elastic impact. 

1.3 Objectives 

The main objective of this research is to develop mathematical impact models for 

colliding bodies based on viscoplastic constitutive behavior. To achieve the main 

objective, the sub-objectives are performed as follows.  

i. To measure impact responses of colliding bodies by performing drop test 

experiment. 
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