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Pengoptimuman Pemindahan Garis Lurus Meter Gangguan Mach-Zehnder 
Optikal Bersepadu Untuk Penderiabio Optikal 

ABSTRAK 

Konvensional fotolithografi sering digunakan dalam proses fabrikasi di dalam makmal 
untuk pemindahan corak garis pandu gelombang optik untuk aplikasi Penderiabio 
Optikal. Meter Gangguan Mach-Zehnder optikal bersepadu (10-MZI) telah digunakan 
secara meluas untuk aplikasi penderiabio optikal. Kajian ini mengaplikasikan asas 
pengoptimuman proses fotolitografi di dalam makmal, berpandukan pemindahan corak 
garis pandu gelombang optik pada cip untuk aplikasi penderiabio optik. Oleh itu, adalah 
penting untuk mendapatkan pemindahan corak garis yang baik dengan kelebaran yang 
keciJ iaitu kira-kira 4µm dan 3cm panjang, yang mana mempunyai kelebihan ketara 
untuk meningkatkan sensitiviti penderiabio. Waiau bagaimanapun, kadar kejayaan 
pemindahan corak 10-MZI adalah sangat rendah dengan rnenggunakan proses 
kepelbagaian pembangunan konvensional. Salah satu faktor utama adalah pencemaran 
zarah yang disebabkan oleh penggunaan semula cecair pembangunan. Dalam kerja ini, 
proses pembangunan tunggal yang inovatif telah dicadangkan dengan meggunakan 
penyediaan yang sama. Konsep kaedah ini bepusat pada pengoptimuman jumlah masa 
pembangunan berasaskan kadar pembangunan model eksperimen dan matematik. Selain 
itu, proses pembangunan tunggal yang dicadangkan telah meningkatkan kadar kejayaan 
pemindahan corak 10-MZI daripada 30% (kaedah pelbagai pembangunan) kepada 90% 
(proses pembangunan tunggal). Pencirian pembangunan tunggal dalam proses fabrikasi 
di makmal telah meningkatkan kejayaan fotolitografi bagi pernindahan garis lurus dan 
pemindahan corak reka bentuk yang lebih kompleks. 

xvii 
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Optimization of Line Pattern Transfer of Integrated Optical Mach-Zehnder 
Interferometer for Optical Biosensor 

ABSTRACT 

Conventional photolithography usually used in in-house fabrication process to transfer 
the design of line pattern. This research lays the foundation for the optimization of 
photo lithography process for line pattern transfer of complex optical circuitry. 
Integrated Optical Mach-Zehnder Interferometer (IO-MZI) has been widely used for 
biosensor applications. In order to have a significant advantage in improving the 
sensitivity of the biosensor, it is crucial to get a good, consistent and conformal line 
pattern transfer with a fine width; in our case is approximately 4µm and 3cm length. 
However, the success rate of 10-MZI pattern transfer had been low using the 
conventional multi-development process. One of the main factors is the particle 
contamination due to the usage of reused developer bath. In this work, an innovative 
single development process had been proposed with the utilization of the same 
conventional set-up. The concept of this method centers around the optimization of the 
total development time based on the experimental and mathematical model of the 
development rate. By doing so, the development process can be completed with only 
one immersion of the substrate in the developer bath. Due to this reason, the aim of this 
project is to improve the success rate and repeatability of photolithography process 
without compromising the resolution and vertical profile, which is necessary for the 
optical waveguide fabrication. Besides, the manipulation of development rate by 
varying exposure time in this work also revealed the possibility of manipulation of line
width based on the exposure time. In short, the proposed single development process 
had increased the success rate of 10-MZI pattern transfer from 300/o (multi-development 
method) to 90% (single-development method). The characterization of in-house single 
development fabrication process has improved the current photolithography setup for 
line pattern transfer and complex design pattern transfer. 

xviii 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Overview of sensor 

 

As the demand for improving the quality of human health blooms, the role of 

optical sensor has been steadily increasing in term of communication data transfer, 

detecting and analyzing body movement, temperature or fluids and turning chemical or 

mechanical signal into an electrical signal. In addition, the sensor is available to be 

integrated into a self-contained device that is able to provide accurate information or 

semi-quantitative analysis, quantitative biology by identifying the elements that come 

into contact directly with the transduction element (Momsia, 2013). Optical sensors use 

principles of light to quantify object characteristics. Optical sensors have a variety of 

uses and therefore they are made according to their requirement at different places. 

There are large numbers of optical sensors available to meet the demands in industrial 

and any other sector. The application of these sensors ranges from computers to motion 

detectors (Fan et al., 2008; Wang et al., 2012; Yildirim, Long, & Gu, 2014;  Filho, 

Lima, & Neff, 2014;  Kashem & Suzuki, 2015). 

 Research and development in  the  optical  sensor  field  is motivated  by  the  

expectation  that  optical  sensors  have significant  advantages  compared  to  

conventional  sensor types in  terms  of  their  properties.  The advantages of optical 

over non-optical sensors are greater sensitivity, electrical passiveness, freedom from 
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2 

 

electromagnetic interference, wide dynamic range, and multiplexing capabilities. 

Optical sensor usually has two points.  One  is  the  transmitting point  where  light  is  

emitted  and  the  other  end is  the receiving  end.  Generally  there  are  three  types  of  

optical sensor which is  through  beam (Shchepakina & Korotkova, 2010; Papadopoulos 

et al., 2012),  reflective (Xia et al., 2010; Kou et al., 2010; Dubra & Sulai, 2011)  and  

retro  reflective (Jin & Holzman, 2010;  Lengsfeld & Shoureshi, 2011; Mihailov, 2012).  

 Integrated optical Mach-Zehnder interferometer (IO-MZI) is one of the types of 

optical sensor. Among the various types of optical sensors, IO-MZI devices have been 

gained much attention for chemical or biological sensing applications due to high 

sensibility, mechanical stability and the integration in silicon based devices (Fan et al., 

2008; Densmore et al., 2009; Duval, et al., 2013). Lots of researches about optical 

waveguide have been reported in last  decade. Integrated optical Mach-Zehnder 

interferometer (IO-MZI) structure  is  always  a  component  among  them.  These  

devices usually used as data transfer for optical telecommunication purposes. These 

devices also can offer  high  extinction  ratio  of  30dB,  low  insertion  loss  of  0.9dB, 

and large  operating  range  with  100nm . Moreover,  optical  waveguide are compact 

and compatible with optical integrated circuit. 

Despite different type of waveguide materials, these sensors share a common 

feature which is the large devices area of approximately 3cm to 4cm in length (Prieto, et 

al., 2003; Sepúlveda et al., 2006;  Hong et al., 2006)  with waveguide width of only the 

4µm to 5µm. Long length dimension is required to improve the sensitivity while the 

narrow width is needed to maintain mono-mode behaviour of the waveguide. Besides, 

small line-width variation is necessary to reduce the variation of line width that can lead 

to mode conversion loss. This particular feature of IO-MZI sensor had resulted in a 
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3 

 

challenge in the fabrication process of the pattern transfer, particularly the 

photolithography process.  

There is an array of photolithography technology available nowadays. The first type 

of photolithography process is the conventional photolithography process that 

undergoes a common string of processes such as spin coating of PR, soft bake, 

exposure, post-exposure bake, development process, and hard bake. The second type of 

photolithography process is the soft lithography (Xia & Whitesides, 1998). Soft 

lithography applies non-photolithographic strategy by self-assembled structures and 

replicating designs using molds for carrying out micro-fabrication or even 

nanofabrication (Xia & Whitesides, 1998). This photolithography process is more 

convenient, low cost and efficient compared to the conventional photolithography 

process (Xia & Whitesides, 1998). The third type of photolithography process would be 

the nanosphere lithography (NSL) process  (Hulteen & Van Duyne, 1995). NSL is used 

to produce a periodic particle array (PPA) surface having nanometer scale features 

(Hulteen & Van Duyne, 1995). A variety of PPA surface could be prepared by using 

identical single layer or double layer masks made by self-assembly of polymer 

nanospheres with a diameter of 264 nm (Hulteen & Van Duyne, 1995).  

The fourth example of photolithography process would be electron beam 

lithography process. Electron beam lithography emphasizes on fabricating device at the 

nanometer scale  (Tseng et al., 2003). Due to the very short wavelength of the electron 

beam and reasonably energy density characteristics, electron beam lithography 

surpasses the conventional photolithography to produce device pattern at nanometer 

scale (Tseng et al., 2003). The electron beam lithography generally applies the step-and-

scan writing strategy instead of step-and-repeat scheme normally used in 

photolithography system (Tseng et al., 2003).  
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The key innovative improvement from the conventional photolithography, which 

used the multi-development process, to single development process is to transfer the 

line pattern successfully without overdeveloping the pattern. The optimized single 

development process based on manipulation of development rate holds great promise 

for the advanced polymer deposition, allowing different patterns (continued and 

discrete) to form on a variety of substrates. This technique is used in this research for 

transfer waveguide pattern in fabrication process and thus providing a highly simplified 

fabrication process.  

 

1.2  Problem Statement 

 

Figure 1.1 shows the multi development process which is commonly used in the 

in-house cleanroom laboratory mainly because it is simple to use and the developer bath 

can be re-used to reduce waste of developer. This multi-development method had been a 

success for pattern transfer with design of big feature size (w > 0.5mm). However, it 

suffers more disadvantages when complex and fine design is involved such as IO-MZI 

in this case (Madou, 2011; Lau, Khor, & Shahimin, 2014). The factors include the 

possible mishandling of wafer that causes the non-uniform development rate across the 

substrate and particle contamination in the re-used developer bath. 

Mishandling of wafer is mainly caused by the use of tweezers to hold the wafer 

in a horizontal position which is not suitable for the procedure of immersion. Using the 

tweezers to retrieve the wafer for silicon dice from a developer bath is very difficult and 

almost impossible to achieve within seconds. Thus, the mishandling of wafer using 

tweezers gives rise to two major problems in multi development process. First, the multi 

immersion step required by multi development process increase significantly the risk of 
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wafer mishandling which all too often causing rework which in turn wasteful in time 

and resources. Besides, being not able to retrieve the wafer immediately also increases 

the risk of over-development and thus failure in pattern transfer. 

 

 

  

 

 

 

 

 

 

 

Figure 1.1: Process flow of the conventional multi development process. 

 

Another important issue of using multi development process in fine pattern 

transfer is the particle contamination. Particle contamination is always a major issue in 

micro fabrication and most of the efforts had been given in getting rid of this problem 

through either the improvement in ventilation system or the equipment standard 

operating procedure to reduce the generation of particle. The multi development process 

however require the reuse of developer as vast volume of developer is needed to support 

the multi immersion step of silicon dice or wafer as well as to optimize the usage of 

developer. As developer is reused, the removed photoresist from the substrate remains 

in the developer when the subsequent development process is performed. Due to this 

reason, there is a high risk whereby this photoresist particle might contaminate the 

substrate and thus the fine and complex pattern to be transferred.  

  

   

 

 
 

 

 

Immersion in 

developer bath 

with specific 

time step 

Immersion in 

DI water bath 

Strong rinse 

of DI water 

Spin dry of 

dice 

Visual inspection 

of development 

profile 

 

If the photoresist is not fully develop 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



6 

 

Besides, due to the fine line width of IO-MZI, visual inspection using bare eye 

which is usually done to reduce process time is almost impossible in this case. As a 

result, visual inspection can only be done by using high power microscope. In order to 

do so, the silicon dice or wafer must first be cleaned and spun dry properly and this 

again adding extra processing time. The most important drawback of using multi 

development process in fine line pattern transfer is the high risk of over development 

process (Rathsack et al., 1999; (Borah et al., 2011). This is because development time 

needed is totally unknown usually and the completion of development process is fully 

relied on visual inspection. Addition to this, the performance of developer also degrades 

over time and the amount of photoresist removed.  

Due to this reason, an innovative single development process had been 

introduced in this work for the aim to improve the success rate of IO-MZI pattern 

transfer. The main idea of single development process is to reduce the multi-

development process into only one process so that the all mentioned disadvantages 

caused by multi-development step can be eliminated and this idea is similar to the 

advanced puddle development process commonly used in the industries. In order to do 

so, total development time must be accurately estimated based on the actual 

development rate which is the challenging part of this work.  

In addition to this, this research will optimized the single development process 

in photolithography. It is an innovative idea to further increase the success rate is to 

manipulate the development rate based on the manipulation of process parameter 

including baking temperature, exposure time and developer concentration. By using this 

innovative single development process, pattern transfer of IO-MZI as well as other 

complicated optical devices can be achieved with high success rate. 
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