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Pengelasan Patologi Pernafasan daripada Isyarat Akustik Pulmonari Menggunakan 

Representasi berparameter dan bukan berparameter  

ABSTRAK 

Auskultasi adalah proses mendengar bunyi dalam badan dengan menggunakan stetoskop. 
Proses ini memberi maklumat penting mengenai keadaan semasa bagi organ-organ dalaman 
seperti jantung, paru-paru dan sistem pencernaan. Auskultasi adalah kaedah yang subjektif dan 
cenderung untuk menjadi kurang dipercayai. Analisis bunyi pernafasan berkomputer 
bagaimanapun adalah lebih berkesan dan boleh dipercayai. Tesis ini membincangkan 
pembangunan sistem sokongan keputusan berkomputer (CDSS) untuk mengesan patologi 
pernafasan menggunakan isyarat akustik paru-paru. Isyarat akustik pulmonari dikumpulkan 
daripada 72 subjek untuk membangunkan CDSS. Dalam usaha untuk membangunkan alat 
CDSS, tiga kerangka metodologi yang berbeza telah dicadangkan untuk menentukan 
klasifikasi patologi pernafasan yang paling berkesan. Isyarat akustik paru-paru telah ditapis 
untuk menyingkirkan bunyi dan artifak lain diikuti oleh segmentasi kitaran pernafasan. Dalam 
tesis ini, segmentasi kitaran pernafasan dilakukan dengan menggunakan sistem kesimpulan 
Fuzzy. Ciri-ciri representasi parametrik (Mel frekuensi pekali cepstral (MFCC) dan model 
Auto-regresif (AR)) dan representasi bukan parametrik (paket wavelet mengubah (WPT) dan 
transformasi Stockwell (ST)) kemudiannya diekstrak keluar. Ciri-ciri yang diekstrak telah 
dikurangkan dimensinya dengan menggunakan analisis komponen utama dan analisis statistik 
telah dilakukan untuk menentukan tahap kepentingan vektor ciri-ciri yang diekstrak dengan 
menggunakan analisa ANOVA sehala. Pemerhatian menunjukkan bahawa ciri-ciri yang 
diekstrak secara statistik signifikan dengan p < 0.05. Dalam peringkat kasifikasi pelbagai 
pengelas bukan linear seperti k-jiran terdekat (k-nn), mesin vektor sokongan (SVM) dan mesin 
pembelajaran melampau (ELM) telah dilaksanakan untuk mengklasifikasikan patologi 
pernafasan daripada bunyi pernafasan. Dalam peringkat klasifikasi, pengelas ELM 
menunjukkan prestasi yang terbaik daripada pengelas k-nn dan SVM untuk semua kerangka. 
Keputusan eksperimen menunjukkan bahawa pengekstrakan ciri-ciri berasaskan ST dengan 
pengelas ELM menunjukkan prestasi yang terbaik dengan kerangka ketiga. Penggunaan ciri-
ciri berasaskan ST dan pengelas ELM dengan kerangka ketiga telah disahkan menggunakan 
satu set data yang terdiri daripada 48 subjek dan sistem itu didapati boleh dipercayai dengan 
purata ketepatan klasifikasi 96.63%, 97.57% dan 98.48% dalam mengklasifikasikan (bunyi 
normal, bunyi paru-paru berterusan dan bunyi paru-paru tidak berterusan), (bubar dan ronchi) 
dan (gemercik halus dan gemercik kasar). Selepas pengesahan berjaya dibuat alat CDSS 
dibangunkan menggunakan ciri-ciri berasaskan ST dan pengelas ELM dengan kerangka 
ketiga. 
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Classification of Respiratory Pathology from Pulmonary Acoustic Signals Using 

Parametric and Non-Parametric Representations 

ABSRACT 

Auscultation is the process of listening to the internal sounds of the body using a stethoscope. 
This process provides vital information on the present state of the internal organs, such as the 
heart, lungs and the gastrointestinal system. Auscultation is subjective and prone to be not 
reliable. However computerized respiratory sound analysis is more effective and reliable. This 
thesis discusses the development of a computerized decision support system (CDSS) to detect 
respiratory pathology using pulmonary acoustic signals. The pulmonary acoustics signals were 
collected from 72 subjects to develop the CDSS. In order to develop the CDSS tool, three 
different methodological frameworks were proposed to determine the most effective 
classification of respiratory pathology. The recorded pulmonary acoustics signals were filtered 
to remove noise and other artifacts followed by respiratory cycle segmentation. In this work, 
the respiratory cycle segmentation is performed by using Fuzzy Inference system. Parametric 
(Mel-frequency cepstral coefficients (MFCC) and Auto-regressive model (AR)) and Non-
parametric (wavelet packet transform (WPT) and Stockwell transform (ST)) representations of 
features were extracted. The features extracted were dimensionally reduced using principal 
component analysis and a statistical analysis was performed to determine the significance 
level of the feature vector using One-way ANOVA. Observations showed that the extracted 
features were statistically significant with p < 0.05. In the classification stage various non-
linear classifiers such as k-nearest neighbor (k-nn), support vector machines (SVM) and 
extreme learning machine (ELM) were implemented to classify the respiratory pathology from 
respiratory sounds. In the classification, extreme learning machine performed better than k-nn 
and support vector machine classifier for all the frameworks. Experimental results showed that 
ST based feature extraction performed well with ELM classifier with third framework. The ST 
based features and ELM classifier with third framework was validated using a new set of data 
comprising of 48 subjects and the system was found to be reliable with mean classification 
accuracy of 96.63%, 97.57% and 98.48% for classifying (normal, continuous lung sounds and 
discontinuous lung sounds), (wheeze and rhonchi) and (fine crackles and coarse crackles) 
respectively. After successful validation a CDSS tool was developed using the ST based 
features and ELM classifier with third framework.   
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CHAPTER 1 

 INTRODCTION 

 

This chapter presents an introduction to respiratory pathology, discussion on 

conventional methods used for the diagnosis of respiratory pathology, drawbacks of the 

existing methods and the advantages of using computerized respiratory sound analysis. The 

main objectives of the proposed research and the organization of the thesis are also 

described in the following section. 

 

1.1    Research Background 

Auscultation is the process of listening to the internal sounds of the body using a 

stethoscope. This process provides vital information on the present state of the internal 

organs, such as the heart, lungs and the gastrointestinal system (Chauhan et al., 2008; J. 

Earis, 1992). The stethoscope, which was invented by a French physician named René 

Théophile Hyacinth Laennec in 1816, has been used to perform auscultation for several 

years now (Welsby et al., 2003). The medical professionals auscultate the heart to indentify 

presence of heart murmurs, gallop and also to monitor the heart rate (Leatham, 1958). 

When listening to the lung sounds, medical professional listen for vital signs such as 

wheeze, rhonchi and crackles (Murphy, 1981). In auscultating the gastrointestinal system, 

medical professional listen for signs of bowel sounds (Craine et al., 1999).  The 

stethoscope remains the most widely used instrument in clinical medicine. In addition, it 

has been an effective tool for the diagnosis of respiratory pathology for a number of years 

now. The auscultation process using stethoscope is inexpensive, non-invasive, and less 

time-consuming. This process mainly relies on the medical professional and hence requires 
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well-trained medical professional to recognise respiratory pathology from sounds. In 

addition, it also depends on the hearing perception of the medical professionals for 

accurate diagnosis. To overcome these drawbacks computerized respiratory sound analysis 

was proposed in the early 1980’s (Nissan et al., 1993).  Computerized respiratory sound 

analysis deals with the analysis of respiratory sounds by applying various signal processing 

and machine learning algorithms.   

1.2    Motivations of the Work 

According to the World Health Organization (WHO), respiratory disorders such as 

chronic obstructive pulmonary disease (COPD), Asthma, pneumonia, pulmonary fibrosis 

and other respiratory related illness stands third as the cause of fatality throughout the 

world. WHO has reported 3 million fatalities due to COPD in the year 2012 (WHO, 2012). 

WHO also has reported that 235 million people were suffering from Asthma in 2011 

(WHO, 2013a). In the case of pneumonia, 935,000 fatalities were reported by WHO in the 

year 2013 (WHO, 2013b). The major cause of respiratory related illness are smoking, 

prolonged exposure to certain toxic agents, air pollution and hereditary. Often, patients 

neglect consulting medical professionals at the early stages of the pathology and only seek 

medical attentions when the respiratory system is affected badly. By the time the 

respiratory abnormality is diagnosed, the damage might be irreversible. Early diagnosis 

and treatment can reduce the number of fatalities drastically and improve the patient’s 

quality of life. Few major cause for fatalities due to respiratory related illness are the lack 

of treatment facilities and lack of medical professional in the rural areas. The methods for 

diagnosing respiratory related illness include auscultation, radiography techniques and 

pulmonary function test are very expensive and also time-consuming. Radiography 

techniques such as X-rays and Computer Tomography (CT) scans causes serious side 

effects on human body when exposed for a longer duration (Kandaswamy et al., 2004). 
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Obstructive pathology cannot be easily diagnosed using the radiography technique. The 

pulmonary function test does not cause any serious effects however it is time-consuming, 

expensive and the patients need to put extra effort in some tests such as spirometry and 

hence it is an invasive procedure. The pulmonary function test provides additional 

information’s such as lung volume, respiratory flow estimation and also the severity level 

of the pathology (Shephard et al., 1959). In spite of its advantages, the drawbacks of 

pulmonary function test are invasive method, expensive and time consuming method. To 

overcome these drawbacks, an alternative method should be developed using respiratory 

sound analysis to recognize the respiratory pathology. The advantages of using the 

computerised respiratory sound analysis include non-invasive based approach, fast 

diagnosis, not expensive and are more accurate. It can additionally serve as a differential 

diagnosis tool for medical professionals. Differential diagnosis is a process to distinguish 

specific disease or condition suffered by a patient or to at least eliminate any other disease 

or condition. This research aims to develop a Computerized Decision Support System 

(CDSS) to detect respiratory pathology using the respiratory sounds. 

 

1.3    Problem Statement  

 There are several issues related to the classification of respiratory pathology from 

respiratory sounds. The previous researchers have formulated unrecognized protocols and 

have not followed the standard computerized respiratory sound analysis (CORSA) 

guidelines in the data acquisition and filtering process. In the respiratory cycle 

segmentation, the researchers have implemented both non-acoustic approach and acoustic 

approach. However, the non-acoustic approaches are considered to affect the natural 

breathing process and hence the acoustic approaches have been implemented by the 
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previous researcher. In the acoustic approaches, researchers have focused on particular 

lung auscultation point and not developed a general method which can segment the 

respiratory cycles of any auscultation point. The accuracy reported by the previous 

researcher in segmenting the respiratory cycle was also found to be low which will have an 

effect on the classification of respiratory pathology. In the feature extraction stage, various 

parametric and non-parametric algorithms were implemented by previous researcher. 

However the sample size also comes into consideration and hence the reported accuracies 

are unreliable to predict the quality of features in categorizing the respiratory pathology. In 

the respiratory pathology classification stage, only few previous researchers have classified 

most of the respiratory pathology (Wheeze, Rhoinchi, Fine Crackles, and Coarse Crackles) 

categories. The previous research also shows that clinical validation was not performed in 

any study reported earlier. The development of CDSS tool is also not reported earlier.   

 

1.4     Research Objectives 

This research aims to develop a CDSS tool for respiratory pathology detection using 

respiratory sounds, signal processing algorithms and artificial intelligence techniques. 

Despite the presence of various studies in literature, this work focuses on various 

parametric and non-parametric characteristics of respiratory sound signals in an effort to 

identify suitable parameters to capture the minute and hidden information from the 

respiratory sounds for the detection of respiratory pathology. The objectives formulated for 

the successful implementation of the system are as follows.  

i. To design an experimental protocol for collecting respiratory sounds using 

Computerized Respiratory Sound Analysis (CORSA) standard. 

 

One of the main challenges in computerized respiratory sound analysis research is 

the acquisition of proper respiratory sound data. To develop an effective 
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